• Title/Summary/Keyword: deep drawing

Search Result 470, Processing Time 0.026 seconds

Development of Integrated Computer-Aided Process Planning System for Press Working Products (프레스 제품의 가공을 위한 통합적 CAPP 시스템 개발)

  • Choi, Jung-Il;Kim, Chang-Bong;Kim, Chul;Kim, Byung-Min;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.59-70
    • /
    • 1999
  • This paper deals with automated computer-aided process planning by which designers can determine operation sequences even if they have little experience in the design of press working products. The computer-aided process planning in hot forging, deep drawing and blanking requires many kinds of technical and empirical skills based on investigation and collection of the knowledge of their processes. An approach to the CAPP system is based on the knowledge-based rules and the process knowledge base consisting of process planning rules is built. The methodology adopted to develop the system is elaborated in this paper. This system has been written in AutoLISP on the AutoCAD with a personal computer and provides powerful capabilities for process planning of hot forging, cold forging, deep drawing and blanking products.

  • PDF

A study on formability of AZ31 alloy sheets in square cup deep drawing process at temperature elevated (AZ31 합금의 온간 사각 컵 디프 드로잉 공정에서의 성형성에 관한 연구)

  • Kim M. C.;Lee Y. S.;Kwon Y. N.;Kim S. W.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.235-238
    • /
    • 2005
  • In this study, it is investigated that the effect of material properties such as strength coefficient and strain hardening exponent on formability of AZ31 alloy sheet in square cup deep drawing process. Mechanical properties of AZ31 alloy sheet at elevated temperature $250^{\circ}C$ are obtained from uniaxial tensile tests and based on these results, a series of square cup deep drawing tests at the same temperature condition are carried out. Also, the possibilities of necking initiation is predicted by the FEM and FLD and compared with experimental results.

  • PDF

A Development of Design Support System for Multistep Deep Drawing Process (다단 디프 드로잉 공정의 설계지원 시스템 개발)

  • 나경환;최석우;최태훈;정완진;김종호;배형수
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.638-643
    • /
    • 2000
  • This study Is concerned with the development of design support program for deep drawing process. The present support program is designed to generate the layout drawings by utilizing the following key functions: analysis of product shape, generation of key stages by pattern database, determination of layout generation method, generation of layout. furthermore, from the results by process design program input data for simulation Is automatically generated with appropriate process parameters and connected seamlessly to carry out the finite element analysis so that the design can be checked for the possible problems in real manufacturing process. The designer can generate layout drawings and test the design by simulation quickly and conveniently In these system designer can verify and optimize the design. We tested this system for various type of product shape md found that the generated layout is in good agreement with the real cases.

  • PDF

Finite Element Analysis of warm Circular Cup Deep Drawing Process of AZ31 Sheet (AZ31 판재의 온간 원형컵 딥드로잉 공정의 유한요소 해석)

  • Lee, M.H.;Kim, H.Y.;Kim, H.K.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.230-233
    • /
    • 2007
  • Due to their low density, high specific strength and electromagnetic interference shielding, magnesium alloy sheets are used increasingly more often in automotive, aerospace, and electronics industries. However, magnesium ally sheets should be usually formed at elevated temperature because of their poor formability at room temperature. For the use of magnesium alloy sheets for an industrial, their mechanical properties at elevated temperature and appropriate forming process conditions have to be developed. In this study, the warm deep drawing process of AZ31 sheets is studied numerically by non-isothermal simulation. The difference between the isothermal simulation results and the non-isothermal simulation results and the progress of warm forming are discussed.

  • PDF

A Study on Friction Coefficient for Sheet Metal Forming (판재 성형을 위한 마찰 계수에 관한 연구)

  • Park D. H.;Kang S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.28-31
    • /
    • 2001
  • Friction for sheet metal forming affects improvement of deep drawing formability. The deep drawing is affected by many process variables, such as lubricant, blank shapes, shape radius and so on. Especially, lubrication is very important formability factor. In this study, in order to investigate fraction coefficient of sheet metal forming, we examined friction test about three conditions, such as non-lubrication, full lubrication and film lubrication. We measured friction coefficient according to pin load under the conditions like deep drawing die. Mean friction coefficient for film lubrication condition would be very useful value to improve drawability.

  • PDF

Improvement on the formability of magnesium alloy sheet by heating and cooling method(II) (가열냉각법에 의한 마그네슘합금의 판재성형성개선(II))

  • Manabe K.;Kang Dae-Min
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.385-388
    • /
    • 2005
  • The use of magnesium alloys meets the need of reducing weight of componests(especially in automotive and aerospace industry) keeping unmodified their mechanical properties. The adoption of magnesium alloys in sheet forming processes is still limited, due to their low formability at room temperature caused by the hexagonal crystal structure. In this study, the authors aim to understand the process condition which can lead to a successful improvement in the formability of a magnesium alloy(AZ31). Experiment and simulations of deep drawing were doned at various warm temperature for the blank and tool(holde and die)while the punch was kept at room temperature by cooling wale. in order to confirm that the deep drawing performance of magnesium alloy can be considerably enhanced with using the local heating and cooling technique.

  • PDF

Texture Evolution in Aluminum Alloy Sheets during Deep Drawing Process (디프드로잉에 의한 알루미늄합금판재의 집합조직 발달에 관한 연구)

  • 최시훈;조재형;정관수;오규환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.140-147
    • /
    • 1998
  • The texture evolution by deep drawing was investigated and the lattice rotation rate was predicted using rate sensitive model with full constraints boundary conditions. The calculated textures show different behaviors with the amount of the flange deformation and initial crystal orientations. Among the crystal orientations located parallel to RD, the crystal orientations around the D component rotated toward the Cu component, the crystal orientations along the ${\alpha}$ fiber rotated toward the {110}<001> and {110}<111> components during deep drawing. In the case of the part parallel to 45$^{\circ}$ with respect to RD, the crystal orientations around the D component rotated about ND and the crystal orientations along the ${\alpha}$ fiber also rotated toward the (110)[23] and (110)[27] components about ND. In the part parallel to TD, the crystal orientations around the D component rotated toward the Rotated Cube and the crystal orientations along the ${\alpha}$ fiber rotated toward the {110}<113> component.

Formability Test in Warm Forming Simulation of Magnesium Alloy Sheet Using FLD (마그네슘 합금 판재의 온간성형 해석에서 FLD를 이용한 성형성 평가)

  • Lee, M.H.;Kim, H.K.;Kim, H.K.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.556-559
    • /
    • 2008
  • In this study, the failure in circular cup deep drawing simulation at warm temperature is predicted using forming limit diagram (FLD). The FLD is used in sheet metal forming analysis to determine the criterion for fracture prediction. The simulation with heat transfer of circular cup deep drawing at warm temperature was conducted. To predict the failure, the simulation with heat transfer used FLD at temperature in the vicinity of maximum thinning. The result of the simulation with heat transfer shows that the drawn depth increases with increasing temperature and is in accord with the experimental results above $150^{\circ}C$. The FLD provides a good guide for the failure prediction of warm forming simulation with heat transfer.

  • PDF

A Study on the Blankholding Force in Deep Drawing Process (디프 드로잉 가공시 블랭크 홀더력에 관한 연구)

  • 이종국;강명순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.886-900
    • /
    • 1989
  • The purpose of this paper is to obtain the effect of blankholding force in deep drawing process. Flange deformation is analysed by theoretical approach in order to apply the optimum blankholding force to the blank. As the result, the upper and lower blankholding force is determined in terms of variables in deep drawing process. Experiment are carried out with the high stiffness spring-type blankholder system. Theoretical upper blankholding force are relatively good agreement with experimental result and the range of initial blankholding forces for various materials tested are found by experiment.

Analysis of warm Deep Drawing of Magnesium Alloy Sheet (마그네슘 합금 판재의 온간 딥드로잉 해석)

  • Lee, M.H.;Kim, H.Y.;Kim, H.J.;Oh, S.I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.294-297
    • /
    • 2007
  • Due to their low densities and high specific strength and stiffness, magnesium alloy sheets are very attractive lightweight materials for automotive and electrical products. However, the magnesium alloy sheets are usually formed at elevated temperature because of their poor formability at room temperature. To use of the magnesium alloy sheets for an industrial, their mechanical properties at elevated temperature and appropriate forming process conditions have to be developed. In this study, non-isothermal simulations of a square cup drawing from magnesium alloy sheets have been conducted to evaluate a proper forming process conditions such as the tool temperature, the tool shoulder radius, friction between the blank and the tools. According to this study, appropriate forming process conditions of square cup drawing at elevated temperature from magnesium alloy sheets are suggested.

  • PDF