• Title/Summary/Keyword: deep disposal

Search Result 241, Processing Time 0.018 seconds

Proposal of an Improved Concept Design for the Deep Geological Disposal System of Spent Nuclear Fuel in Korea

  • Lee, Jongyoul;Kim, Inyoung;Ju, HeeJae;Choi, Heuijoo;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.1-19
    • /
    • 2020
  • Based on the current high-level radioactive waste management basic plan and the analysis results of spent nuclear fuel characteristics, such as dimensions and decay heat, an improved geological disposal concept for spent nuclear fuel from domestic nuclear power plants was proposed in this study. To this end, disposal container concepts for spent nuclear fuel from two types of reactors, pressurized water reactor (PWR) and Canada deuterium uranium (CANDU), considering the dimensions and interim storage method, were derived. In addition, considering the cooling time of the spent nuclear fuel at the time of disposal, according to the current basic plan-based scenarios, the amount of decay heat capacity for a disposal container was determined. Furthermore, improved disposal concepts for each disposal container were proposed, and analyses were conducted to determine whether the design requirements for the temperature limit were satisfied. Then, the disposal efficiencies of these disposal concepts were compared with those of the existing disposal concepts. The results indicated that the disposal area was reduced by approximately 20%, and the disposal density was increased by more than 20%.

Deep Borehole Disposal of Nuclear Wastes: Opportunities and Challenges

  • Schwartz, Franklin W.;Kim, Yongje;Chae, Byung-Gon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.301-312
    • /
    • 2017
  • The concept of deep borehole disposal (DBD) for high-level nuclear wastes has been around for about 40 years. Now, the Department of Energy (DOE) in the United States (U.S.) is re-examining this concept through recent studies at Sandia National Laboratory and a field test. With DBD, nuclear waste will be emplaced in boreholes at depths of 3 to 5 km in crystalline basement rocks. Thinking is that these settings will provide nearly intact rock and fluid density stratification, which together should act as a robust geologic barrier, requiring only minimal performance from the engineered components. The Nuclear Waste Technical Review Board (NWTRB) has raised concerns that the deep subsurface is more complicated, leading to science, engineering, and safety issues. However, given time and resources, DBD will evolve substantially in the ability to drill deep holes and make measurements there. A leap forward in technology for drilling could lead to other exciting geological applications. Possible innovations might include deep robotic mining, deep energy production, or crustal sequestration of $CO_2$, and new ideas for nuclear waste disposal. Novel technologies could be explored by Korean geologists through simple proof-of-concept experiments and technology demonstrations.

A Review of the Influence of Sulfate and Sulfide on the Deep Geological Disposal of High-level Radioactive Waste (고준위방사성폐기물 심층처분에 미치는 황산염과 황화물의 영향에 대한 고찰)

  • Jin-Seok Kim;Seung Yeop Lee;Sang-Ho Lee;Jang-Soon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.421-433
    • /
    • 2023
  • The final disposal of spent nuclear fuel(SNF) from nuclear power plants takes place in a deep geological repository. The metal canister encasing the SNF is made of cast iron and copper, and is engineered to effectively isolate radioactive isotopes for a long period of time. The SNF is further shielded by a multi-barrier disposal system comprising both engineering and natural barriers. The deep disposal environment gradually changes to an anaerobic reducing environment. In this environment, sulfide is one of the most probable substances to induce corrosion of copper canister. Stress-corrosion cracking(SCC) triggered by sulfide can carry substantial implications for the integrity of the copper canister, potentially posing a significant threat to the long-term safety of the deep disposal repository. Sulfate can exist in various forms within the deep disposal environment or be introduced from the geosphere. Sulfate has the potential to be transformed into sulfide by sulfate-reducing bacteria(SRB), and this converted sulfide can contribute to the corrosion of the copper canister. Bentonite, which is considered as a potential material for buffering and backfilling, contains oxidized sulfate minerals such as gypsum(CaSO4). If there is sufficient space for microorganisms to thrive in the deep disposal environment and if electron donors such as organic carbon are adequately supplied, sulfate can be converted to sulfide through microbial activity. However, the majority of the sulfides generated in the deep disposal system or introduced from the geosphere will be intercepted by the buffer, with only a small amount reaching the metal canister. Pyrite, one of the potential sulfide minerals present in the deep disposal environment, can generate sulfates during the dissolution process, thereby contributing to the corrosion of the copper canister. However, the quantity of oxidation byproducts from pyrite is anticipated to be minimal due to its extremely low solubility. Moreover, the migration of these oxidized byproducts to the metal canister will be restricted by the low hydraulic conductivity of saturated bentonite. We have comprehensively analyzed and summarized key research cases related to the presence of sulfates, reduction processes, and the formation and behavior characteristics of sulfides and pyrite in the deep disposal environment. Our objective was to gain an understanding of the impact of sulfates and sulfides on the long-term safety of high-level radioactive waste disposal repository.

A Foreign Cases Study of the Deep Borehole Disposal System for High-Level Radioactive Waste (고준위 방사성폐기물 심부시추공 처분시스템 개발 해외사례 분석)

  • Lee, Jongyoul;Kim, Geonyoung;Bae, Daeseok;Kim, Kyeongsoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • If the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3~5 km and more stable rock formation, it has several advantages. For example, (1)significant fluid flow through basement rock is prevented, in part, by low permeability, poorly connected transport pathways, and (2)overburden self-sealing. (3)Deep fluids also resist vertical movement because they are density stratified and reducing conditions will sharply limit solubility of most dose-critical radionuclides at the depth. Finally, (4) high ionic strengths of deep fluids will prevent colloidal transport. Therefore, as an alternative disposal concept to the deep geological disposal concept(DGD), very deep borehole disposal(DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, for the preliminary applicability analyses of the DBD system for the spent fuels or high level wastes, the DBD concepts which have been developed by some countries according to the rapid advance in the development of drilling technology were reviewed. To do this, the general concept of DBD system was checked and the study cases of foreign countries were described and analyzed. These results will be used as an input for the analyses of applicability for DBD in Korea.

An Analysis of the Deep Geological Disposal Concepts Considering Spent Fuel Rods Consolidation (사용후핵연료봉 밀집을 고려한 심지층처분 개념 분석)

  • Lee, Jongyoul;Kim, Hyeona;Lee, Minsoo;Kim, Geonyoung;Choi, Heuijoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.287-297
    • /
    • 2014
  • For several decades, many countries operating nuclear power plants have been studying the various disposal alternatives to dispose of the spent nuclear fuel or high-level radioactive waste safely. In this paper, as a direct disposal of spent nuclear fuels for deep geological disposal concept, the rod consolidation from spent fuel assembly for the disposal efficiency was considered and analyzed. To do this, a concept of spent fuel rod consolidation was described and the related concepts of disposal canister and disposal system were reviewed. With these concepts, several thermal analyses were carried out to determine whether the most important requirement of the temperature limit for a buffer material was satisfiedin designing an engineered barrier of a deep geological disposal system. Based on the results of thermal analyses, the deposition hole distance, disposal tunnel spacing and heat release area of a disposal canister were reviewed. And the unit disposal areas for each case were calculated and the disposal efficiencies were evaluated. This evaluation showed that the rod consolidation of spent nuclear fuel had no advantages in terms of disposal efficiency. In addition, the cooling time of spent nuclear fuels from nuclear power plant were reviewed. It showed that the disposal efficiency for the consolidated spent fuel rods could be improved in the case that cooling time was 70 years or more. But, the integrity of fuels and other conditions due to the longer term storage before disposal should be analyzed.

Evaluation of Hydrogeological Characteristics of Deep-Depth Rock Aquifer in Volcanic Rock Area (화산암 지역 고심도 암반대수층 수리지질특성 평가)

  • Hangbok Lee;Chan Park;Junhyung Choi;Dae-Sung Cheon;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.3
    • /
    • pp.231-247
    • /
    • 2024
  • In the field of high-level radioactive waste disposal targeting deep rock environments, hydraulic characteristic information serves as the most important key factor in selecting relevant disposal sites, detailed design of disposal facilities, derivation of optimal construction plans, and safety evaluation during operation. Since various rock types are mixed and distributed in a small area in Korea, it is important to conduct preliminary work to analyze the hydrogeological characteristics of rock aquifers for various rock types and compile the resulting data into a database. In this paper, we obtained hydraulic conductivity data, which is the most representative field hydraulic characteristic of a high-depth volcanic bedrock aquifer, and also analyzed and evaluated the field data. To acquire field data, we used a high-performance hydraulic testing system developed in-house and applied standardized test methods and investigation procedures. In the process of hydraulic characteristic data analysis, hydraulic conductivity values were obtained for each depth, and the pattern of groundwater flow through permeable rock joints located in the test section was also evaluated. It is expected that the series of data acquisition methods, procedures, and analysis results proposed in this report can be used to build a database of hydraulic characteristics data for high-depth rock aquifers in Korea. In addition, it is expected that it will play a role in improving technical know-how to be applied to research on hydraulic characteristic according to various bedrock types in the future.

An Analysis on the Deep Geological Disposal Concepts Considering the Spent Fuel Length (사용후핵연료 길이에 따른 심지층 처분시스템 분석)

  • LEE, Jongyoul;KIM, Hyeona;LEE, Minsoo;CHOI, Heuijoo;KIM, Keonyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.201-209
    • /
    • 2015
  • Currently, 23 nuclear power plants are in operation at Kori, Uljin, Younggwang and Wolsong site and a reference deep geological disposal system has been developed for the spent fuels generated by them. The reference spent fuel for this disposal system has 4.5wt% of initial enrichment, 55 GWd/MtU of burn-up, and 40 years of cooling time. In this paper, to improve disposal efficiency and economic feasibility, the characteristics of spent fuels from nuclear power plants, such as type and burn-up, were reviewed. A disposal canister concept for shorter length and relatively lower burn-up spent fuels than the reference spent fuels was developed. Based on this canister concept, thermal analyses were carried out and a deep geological disposal concept was proposed. Measures of disposal efficiency such as unit disposal area and disposal density were compared between this disposal system and the reference disposal system. Also, economic feasibility, such as the volume reduction of copper, cast iron, and bentonite, was analyzed and the results of these analyses showed that the disposal system proposed in this paper has an efficiency of at least 20%. These results could be used for establishing spent fuel management policy and designing practical disposal systems for spent fuels.

A Current Status of Natural Analogues Programs in Nations Considering High-Level Radioactive Waste Disposal

  • HunSuk Im;Dawoon Jeong;Min-Hoon Baik;Ji-Hun Ryu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.65-93
    • /
    • 2023
  • Several countries have been operating radioactive waste disposal (RWD) programs to construct their own repositories and have used natural analogues (NA) studies directly or indirectly to ensure the reliability of the long-term safety of deep geological disposal (DGD) systems. A DGD system in Korea has been under development, and for this purpose a generic NA study is necessary. The Korea Atomic Energy Research Institute has just launched the first national NA R&D program in Korea to identify the role of NA studies and to support the safety case in the RWD program. In this article, we review some cases of NA studies carried out in advanced countries considering crystalline rocks as candidate host rocks for high-level radioactive waste disposal. We examine the differences among these case studies and their roles in reflecting each country's disposal repository design. The legal basis and roadmap for NA studies in each country are also described. However because the results of this analysis depend upon different environmental conditions, they can be only used as important data for establishing various research strategies to strengthen the NA study environment for domestic disposal system research in Korea.

A Discussion on the Deep Horizontal Drillhole Disposal Concept of Spent Nuclear Fuel in Korea (사용후핵연료의 심부수평시추공처분 개념에 관한 소고)

  • Kim, Kyungsu;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.355-362
    • /
    • 2019
  • This technical note introduces a newly-proposed concept of deep horizontal drillhole disposal of spent nuclear fuel, and considers how it can be applied in the Korean environment. This disposal concept, in which high-level radioactive waste is disposed in deep horizontal drillholes installed with directional drilling technique, is expected to have great advantages over the existing deep mined repository concept in economics and safety. Since this concept is still at the idea level, however, it is necessary for worldwide expert groups to demonstrate its safety and performance. In addition, the development of guidelines by the regulatory body should be supported. The Korean circumstances, which include a narrow territory and a high population density, as well as the amount of spent nuclear fuel, make the NIMBY (Not In My Back Yard) phenomenon very strong and the siting conditions difficult. Under these conditions, if the disposal section of deep horizontal drillhole concept can be located at the continental shelf, with a stable environment, rather than in a coastal land area, it is expected to alleviate the psychological anxiety of the local community and stakeholders. Moreover, even when constructing a centralized deep mined repository in the future, it is necessary to consider locating the repository in the continental shelf.