• Title/Summary/Keyword: deep cement method

Search Result 75, Processing Time 0.027 seconds

Stability Analysis of DCM treated Ground Using Centrifuge Test (원심모형시험을 이용한 DCM 처리지반의 안정성 평가)

  • Kim, Byoung-Il;Yoo, Wan-Kyu;Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.105-110
    • /
    • 2011
  • Recently, a deep mixture method as a soil improvement method of marine soft ground, which causes less noise and vibration than other methods, are widely used. In this study, for DCM(Deep Cement Mixing) method, one of the deep mixture method, optimum mixing ratio of clay-cement was suggested using uniaxial compression tests on specimens with various mixing ratio of claycement. In addition, the stability of a caisson on tangent circle-type and wall-type DCM treated ground was evaluated using centrifuge tests. As a result, optimum mixing ratio of clay-cement was 28.5% and the stability of the caisson on DCM treated ground was confirmed. However, the lateral displacement of the caisson on the wall-type DCM treated ground was 7% less and the settlement of that was 39% less than the case of the tangent-circle-type DCM method.

An Experimental Study on the Quality Characteristics of Soil-Cement for Deep Mixing Method Using Carbon Capture Minerals(CCM) (이산화탄소 포집광물을 활용한 심층혼합처리용 Soil-Cement의 품질 특성에 관한 실험적 연구)

  • Jung, Woo-Yong;Ju, Hyang-Jong;Oh, Sung-Rok;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.153-160
    • /
    • 2020
  • In this study, the optimum ratio of soil-cement was derived to utilize carbon capture minerals(CCM) as soil-cement for deep mixing method, quality characteristics of soil-cement mixed with carbon capture minerals were evaluated. The CCM is generated in the form of a slurry, and as a result of evaluating water content, it was found to be about 50%. Accordingly, the water content of CCM was removed in the unit water of Soil-cement mix. As a result of field mixing of soil-cement using CCM on field soil, it showed that the design allowable bearing capacity was satisfied by showing 3.0MPa or more as of 28 days of age. As a result of the hazard verification of carbon capture minerals, 0.055mg/L of Cu was detected, but satisfies the acceptance criteria, and no other harmful substances were eluted.

DSM Application for Deep Excavation in Singapore (싱가포르 지역 깊은 굴착을 위한 지반개량공법 DSM의 적용 사례)

  • Chun, Youn-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2425-2433
    • /
    • 2011
  • DSM (Deep Soil Mixing) is to establish soil-cement column by injecting of cement slurry and blending it in soft ground and have been introduced to Singapore in 1980s and now a days quite popular and considered as alternative method to the jet grouting for temporary earth retaining works and foundations. Herein this paper, the results of lab mixing test based on comparison of characteristics between OPC (Original Portland Cement) and PBFC (Portland Blast Furnace Slag Cement), DSM field trial test and main installation results including monitoring, was presented and it would be referred to similar site later.

Application for Self-Supported Retaining Wall Using Deep Cement Mixing (DCM(심층혼합처리공법)에 의한 자립식 흙막이 적용사례)

  • Jeong, Gyeong-Hwan;Kim, Yong-Wan;Shin, Min-Sik;Han, Kyoung-Tae;Kim, Tae-Hyo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.257-267
    • /
    • 2006
  • The earth retaining wall systems for excavation works in a populated urban area or a poor soil deposit can be limited due to various restriction. Thus there are various methods to be applied for them such as the soldier pile method, the diaphragm wall with counterfort and so on. In this study, the self-supported earth retaining wall using the DCM(Deep Cement Mixing) method, including its merits, demerits and some important characteristics occured in the design and the construction stage, was introduced. It might be reference for the other design and construction procedures using the DCM method.

  • PDF

Stabilized marine and desert sands with deep mixing of cement and sodium bentonite

  • Saberian, Mohammad;Moradi, Mojtaba;Vali, Ramin;Li, Jie
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.553-562
    • /
    • 2018
  • Road construction is becoming increasingly important in marine and desert areas due to population growth and economic development. However, the load carrying capacity of pavement is of gear concern to design and geotechnical engineers because of the poor engineering properties of the soils in these areas. Therefore, stabilization of the soils is regarded as an important issue. Besides, due to the fuels combustion and carbonate decomposition, cement industry generates around 5% of global $CO_2$ emission. Thus, using bentonite as a natural pozzolan in soil stabilization is more eco-friendly than using cement. The aim of this research is to experimentally study of the stabilized marine and desert sands using deep mixing method by ordinary Portland cement and sodium bentonite. Different partial percentages of cement along with different weight percentages of sodium bentonite were added to the sands. Unconfined compression test (UCS), Energy Dispersive X-ray (EDX), and Scanning Electron Microscope (SEM) were conducted on the specimens. Moreover, a mathematical model was developed for predicting the strength of the treated soils.

Stabilization of Meles Delta soils using cement and lime mixtures

  • Onal, Okan;Sariavci, Cagrihan
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.543-554
    • /
    • 2019
  • İzmir Bay reserves high amount of residual alluvial deposits generated by Meles River at its stream mouth. These carried sediments with high water content and low bearing capacity are unsuitable in terms of engineering purposes. In-situ soil stabilization with deep soil mixing method is considered to improve properties of soil in this location. This method is widely used especially over Scandinavia, Japan and North America. Basically, the method covers mixing appropriate binder into the soil to improve soil profile according to the engineering needs. For this purpose, soil samples were initially provided from the site, classification tests were performed and optimum ratios of lime and cement binders were determined. Following, specimens representing the in-situ soil conditions were prepared and cured to be able to determine their engineering properties. Unconfined compression tests and vane shear tests were applied to evaluate the stabilization performance of binders on samples with different curing periods. Scanning electron microscope was used to observe time-dependent bonding progress of binders in order to validate the results. Utilization of 4% lime and 4% cement mixture for the long-term performance and 8% lime and 8% cement mixture for short term performance were suggested for the stabilization of Meles Delta soils. Development of CSH and CAH in a gel form as well as CSH crystals were clearly observed on SEM images of treated specimens.

Case Study of Stress Concentration Ratio of Composite Ground Improved by Deep Cement Mixing Method (심층혼합처리공법으로 개량된 복합지반의 응력분담비에 대한 사례 연구)

  • Yoo, Wan-Kyu;Kim, Byoung-Il;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3216-3223
    • /
    • 2012
  • Deep cement mixing method (DCM) is one of the most effective improving methods for deep soft ground. The strength of soft soil can be increased in a short period of time with less noise and vibration. However, it is necessary to determine the stress transferring and concentration ratio of the composite soft ground for estimating the settlement behaviors. In this study, a model test was undertaken to investigate the stress distribution of the improved soil. Results of the model test shows that stresses were concentrated mainly on the improved areas by DCM and the concentration ratios (35.4, 28.6, 27.02) were obtained using several different techniques. These were well in accordance with other previous research results (26.52, 32.5).

Professional Engineer Yard - The construction example of deep cement mixing method for the soil improvement of soft ground in sports center structure foundation work around the mouth of Nakdong River (기술사 마당 - 낙동강(洛東江)주변의 체육센터시설물기초 연약지반(軟弱地盤)처리를 위한 DCMM 시공사례)

  • Cho, Kyoo-Yung;Kim, Jin-Eok;Jeong, Byeong-Chan
    • Journal of the Korean Professional Engineers Association
    • /
    • v.44 no.6
    • /
    • pp.45-50
    • /
    • 2011
  • As the Deep Cement Mixing Method is composed of drilled natural soft soil structure and injected cement slurry to be mix together in it, the nature of excavated ground is influenced directly to the application of constructability. Also the nature of in situ soil is the main material, the mix design and construction work plan should be established before the investigation of soil which is performed through the whole site confirm the soil parameter before construction. The nature of investigated soil and water level as should be performed accurately.

  • PDF

Reliability Analysis of a Quay Wall Constructed on the Deep-Cement-Mixed Ground (Part II: Internal Stability of the Improved Soil System) (심층혼합처리지반에 설치된 안벽의 신뢰성해석 (Part II: 개량지반의 내부안정))

  • Huh, Jung-won;Park, Ock-Joo;Kim, Young-Sang;Hur, Dong-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.88-94
    • /
    • 2010
  • A reliability analysis method is proposed in this paper to quantitatively evaluate the risk for internal stability of a quay wall constructed on the deep cement mixed ground, differentiating from the companion paper that mainly describes the external stability. Failure modes for toe pressure, shear strength of improved ground and extrusion of unimproved soft soil are investigated and compared in the risk estimation of internal stability using MVFOSM, FORM, and MCS. From the reliability analysis results for internal stability of a quay wall, the variance and distribution type of the compressive strength of Deep Mixed Soil-Cement appear to be very affective to the failure probability. On the other hand, other random variables seem to be relatively very insensitive to the probability of failure. It is therefore very important to rationally and accurately determine the probabilistic properties of the in-site compressive strength of Deep Mixed Soil-Cement.

CURING REACTION OF THE LIGHT CURED FLOWABLE COMPOSITE RESINS THROUGH THE ENDODONTIC TRANSLUCENT FIBER POST (투명 fiber 포스트를 통한 광중합형 접착레진의 중합 반응)

  • Ahn Seok;Park Sang-Won;Yang Hong-So;Vang Mong-Sook;Park Ha-Ok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Purpose: The purpose of this study was to evaluate the efficacy and substitute possibility of a newly developed flowable composite resins as a luting cement for translucent fiber post. Material & Method: Two kinds of 12 mm translucent fiber Post (D.T. Light-Post (Bisco, USA) and FRC Postec (Ivoclar vivadent, Liechtenstein) was inserted into the teflon mold (7 mm diameter, 9 mm long) and Filtek-Flow (3M ESPE. USA), a light activated flowable composite resin, was polymerized for 60 seconds through the post. Also, the post was cut from the tip to 9 mm, 6 mm, 3 mm, and Filtek-Flow was light cured according to each length. For comparison, 60 seconds light-cured and 24 hours self-cured two dual cured resin cement (Duo-cement (Bisco, USA) and 2 Panavia-F (Kuraray, Japan)) samples were prepared as control group. Also cavities (1 mm in width, 1 mm in depth and 12 mm in length) were prepared using acrylic plate and aluminum bar, and flowable composite resin was flied and light cured by the diffused light from the fiber post's side wall. The degree of polymerization was measured according to the distance from curing light using Vickers' hardness test. Result: Within the limitation of this study, the following conclusions were drawn: 1. Vickers' hardness of light cured dual cured resin cement and flowable composite resin decreased from Panavia-F, Filtek-Flow and Duo-cement accordingly (p<0.05). In the dual curing resin cement, light curing performed group showed higher surface hardness value than self cured only group (p<0.05). 2. Surface hardness ratio (light cured through fiber post /directly light cured) of D.T. Light-Post using Filtek-Flow showed about 70% in the 6 mm deep and about 50% in the 12 mm deep FRC Postec showed only 40% of surface hardness ratio. 3. Surface hardness ratio by diffused light from the post's side wall showed about 50% at 6 mm and 9 mm deep, and about 40% at 12 mm deep in D.T. Light-Post. However, FRC Postec showed about 40% at 6 mm deep, and almost no polymerization in 9 mm and 12 mm deep.