• Title/Summary/Keyword: deduced amino acid sequence

Search Result 531, Processing Time 0.016 seconds

Optimization of a Medium for the Production of Cellulase by Bacillus subtilis NC1 Using Response Surface Methodology (반응 표면 분석법을 사용한 Bacillus subtilis NC1 유래 cellulase 생산 배지 최적화)

  • Yang, Hee-Jong;Park, Chang-Su;Yang, Ho-Yeon;Jeong, Su-Ji;Jeong, Seong-Yeop;Jeong, Do-Youn;Kang, Dae-Ook;Moon, Ja-Young;Choi, Nack-Shick
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.680-685
    • /
    • 2015
  • Previously, cellulase and xylanase producing microorganism, Bacillus subtilis NC1, was isolated from soil. Based on the 16S rRNA gene sequence and API 50 CHL test the strain was identified as Bacillus subtilis, and named as B. subtilis NC1. We cloned and sequenced the genes for cellulase and xylanase. Plus, the deduced amino acid sequences from the genes of cellulase and xylanase were determined and were also identified as glycosyl hydrolases family (GH) 5 and 30, respectively. In this study to optimize the medium parameters for cellulase production by B. subtilis NC1 the RSM (response surface methodology) based on CCD (central composite design) model was performed. Three factors, tryptone, yeast extract, and NaCl, for N or C source were investigated. The cellulase activity was measured with a carboxylmethyl cellulose (CMC) plate and the 3,5-dinitrosalicylic acid (DNS) methods. The coefficient of determination (R2) for the model was 0.960, and the probability value (p=0.0001) of the regression model was highly significant. Based on the RSM, the optimum conditions for cellulase production by B. subtilis NC1 were predicted to be tryptone of 2.5%, yeast extract of 0.5%, and NaCl of 1.0%. Through the model verification, cellulase activity of Bacillus subtilis NC1 increased from 0.5 to 0.62 U/ml (24%) compared to the original medium.