• Title/Summary/Keyword: decomposition of number

Search Result 544, Processing Time 0.026 seconds

Shortest Path Calculation Using Parallel Processor System (병력구조 전산기를 이용한 최단 경로 계산)

  • 서창진;이장규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.6
    • /
    • pp.230-237
    • /
    • 1985
  • Shortest path calculations for a large-scale network have to be performed using a decomposition techniqre, since the calculations require large memory size which increases by the square of the number of vertices in the network. Also, the calculation time increases by the cube of the number of vertices in the network. In the decomposition technique,the network is broken into a number of smaller size subnetworks for each of which shortest paths are computed. A union of the solutions provides the solution of the original network. In all of the decomposition algirithms developed up to now, boundary vertices which divide all the subnetworks have to be included in computing shortest paths for each subnetwork. In this paper, an improved algorithm is developed to reduce the number of boundary vertices to be engaged. In the algorithm, only those boundary vertices that are directly connected to the subnetwork are engaged. The algorithm is suitable for an application to real time computation using a parallel processor system which consists of a number of micro-computers or prcessors. The algorithm has been applied to a 39- vertex network and a 232-vertex network. The results show that it is efficient and has better performance than any other algorithms. A parallel processor system has been built employing an MZ-80 micro-computer and two Z-80 microprocessor kits. The former is used as a master processor and the latter as slave processors. The algorithm is embedded into the system and proven effective for real-time shortest path computations.

  • PDF

Effect of Electrode Process Variables in case of Decomposition of $NO_{x}$ by SPCP (연면방전에 의한 질소산화물의 분해시 전극 공정변수에 대한 영향)

  • 안형환;강현춘
    • Journal of the Korea Safety Management & Science
    • /
    • v.1 no.1
    • /
    • pp.241-258
    • /
    • 1999
  • For hazardous air pollutants(HAP) such as NO and $NO_{2}$ decomposition efficiency, power consumption, and applied voltage were investigated by SPCP(surface induced discharge plasma chemical processing) reactor to obtain optimum process variables and maximum decomposition efficiencies. Decomposition efficiency of HAP with various electric frequencies(5~50 kHz), flow rates(100~1,000 mL/min), initial concentrations(100~1,000 ppm), electrode materials(W, Cu, Al), electrode thickness(1, 2, 3 mm) and number of electrode windings(7, 9, 11) were measured. Experimental results showed that for the frequency of 10 kHz, the highest decomposition efficiency of 94.3 % for NO and 84.7 % for $NO_{2}$ were observed at the power consumptions of 19.8 and 20W respectively and that decomposition efficiency decreased with increasing frequency above 20 kHz. Decomposition efficiency was increased with increasing residence times and with decreasing initial concentration of pollutants. Decomposition efficiency was increased with increasing thickness of discharge electrode and the highest decomposition efficiency was obtained for the electrode diameter of 3 mm in this experiment. As the electrode material, decomposition efficiency was in order : tungsten(W), copper(Cu), aluminum(Al).

  • PDF

Structural parameter estimation combining domain decomposition techniques with immune algorithm

  • Rao, A. Rama Mohan;Lakshmi, K.
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.343-365
    • /
    • 2011
  • Structural system identification (SSI) is an inverse problem of difficult solution. Currently, difficulties lie in the development of algorithms which can cater to large size problems. In this paper, a parameter estimation technique based on evolutionary strategy is presented to overcome some of the difficulties encountered in using the traditional system identification methods in terms of convergence. In this paper, a non-traditional form of system identification technique employing evolutionary algorithms is proposed. In order to improve the convergence characteristics, it is proposed to employ immune algorithms which are proved to be built with superior diversification mechanism than the conventional evolutionary algorithms and are being used for several practical complex optimisation problems. In order to reduce the number of design variables, domain decomposition methods are used, where the identification process of the entire structure is carried out in multiple stages rather than in single step. The domain decomposition based methods also help in limiting the number of sensors to be employed during dynamic testing of the structure to be identified, as the process of system identification is carried out in multiple stages. A fifteen storey framed structure, truss bridge and 40 m tall microwave tower are considered as a numerical examples to demonstrate the effectiveness of the domain decomposition based structural system identification technique using immune algorithm.

Study on Properties of Poly (ethylene terephthalate) Films Treated with Mono-sodium ethylene glycolate (Mono-sodium ethylene glycolate 처리에 의한 Poly(ethylene terephthalate) Film의 물성에 관한 연구)

  • Cho, Hwan;Heo, Man-Woo;Cho, In-Sool;Lee, Kwang-Woo;Cho, Kyu-Min
    • Textile Coloration and Finishing
    • /
    • v.2 no.4
    • /
    • pp.223-230
    • /
    • 1990
  • This study was carried out with the view of fundamental investigating to improve the tactile and the hygroscopicity of Poly (ethylene terephthalate) (PET) fibers. Mono-sodium ethylene glycolate in ethylene glycol (MSEG-EG) solution was prepared and PET films were treated with it. The following conclusions were obtained. 1. The tensile strength decreased with increasing decomposition ratio while density, crystallinity and crystallite size increased with increasing decomposition ratio when PET films were treated with MSEG-EG solution. 2. Number of carboxyl end groups was increased until 10-20% decomposition ratio when PET films were treated with MSEG-EG solution. However, the decomposition ratio became more than 20%, the number of carboxyl end groups had tendency to decreased. 3. The surface tension of PET films increased for treating with MSEC-EG solution. Hydrogen bonding force and poler force among the components of surface tension increased while dispersion force among those decreased. 4. The moisture region of PET films increased with increasing decomposition ratio when PET films were treated with MSEG-EG solution.

  • PDF

Effects of Rice Straw on the Microflora in Submerged Soil -II. Relation to the Decommposition of Organic Matter (볏짚시용(施用)이 논토양(土壤)의 미생물상(微生物相)에 미치는 영향(影響) -II. 유기물대사(有機物代謝)에 관여(關與)하는 미생물(微生物)과 유기물(有機物)의 분해(分解))

  • Kim, Yong-Woong;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.3
    • /
    • pp.289-298
    • /
    • 1984
  • These studies were carried out to investigate the effects of rice straw on microflora in relation to the decomposition of organic matter, and the rate of rice straw decomposition. The number of total bacteria was increased in the first stage, and the number of microorganisms in upper layer was generally larger than lower layer. The number of fungi tended to decline as rice plant grew. Aerobacter among cellulose decomposition bacteria decreased with time, and the number of microorganisms in lower layer was higher than upper layer. The number of glucose decomposition bacteria and sulfate reducing bacteria increased in the submerged soil to which rice straw was applied, but decreased by percolation. the change of manganese oxidizing bacteria seemed not to be affected by rice straw application while they tend to increase as the rice plant grew. The aspect of microorganisms in the percolated water was same that of lower layer, but the number was low as much $10^{-1}$ during the whole stages. The decomposition rate of rice straw applied to submerged soil was about 40 per cent during the rice grew. The decomposition rate of cellulose contained rice straw was about 30 per cent, and lignin was about 60 per cent. The 70-80 per cent of nitrogen remained in the rice straw applied to soil.

  • PDF

Multi-scale crack detection using decomposition and composition (해체와 구성을 이용한 다중 스케일 균열 검출)

  • Kim, Young Ro;Chung, Ji Yung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.13-20
    • /
    • 2013
  • In this paper, we propose a multi-scale crack detection method. This method uses decomposition, composition, and shape properties. It is based on morphology algorithm, crack features. We use a morphology operator which extracts patterns of crack. It segments cracks and background using opening and closing operations. Morphology based segmentation is better than existing integration methods using subtraction in detecting a crack it has small width. However, morphology methods using only one structure element could detect only fixed width crack. Thus, we use decomposition and composition methods. We use a decimation method for decomposition. After decomposition and morphology operation, we get edge images given by binary values. Our method calculates values of properties such as the number of pixels and the maximum length of the segmented region. We decide whether the segmented region belongs to cracks according to those data. Experimental results show that our proposed multi-scale crack detection method has better results than those of existing detection methods.

Signal-to-noise ratio enhancement of ultrasonic signal by using constant frequency-to-bandwidth ratio decomposition method (비대역폭 분할 방법을 이용한 초음파 신호의 S/N 비 개선)

  • 김태현;구길모;고대식;전계석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.50-57
    • /
    • 1994
  • In the non-destructive evaluation techniques using ultrasonic signal, backscattering noise from grain interface decreases the SNR of received signal. In this paper, SSP(split-spectrum processing) based on the constant FBR decomposition method has been applied to enhance the SNR. This algorithm helps to find optimal parameters of filter bank through a simple theory and has an advantage that reduce the signal processing time compared with the conventional constant bandwidth decomposition method. In this experiment, the 304 stainless steel sample is heat-treated and received ultrasonic signal is processed by SSP using the constand bandwidth decomposition method and the constand FBR decomposition method enhanced the SNR by 1.4 dB and reduced the required number of filters by 4 compared with the constant bandwidth decomposition method.

  • PDF

LEVEL-m SCALED CIRCULANT FACTOR MATRICES OVER THE COMPLEX NUMBER FIELD AND THE QUATERNION DIVISION ALGEBRA

  • Jiang, Zhao-Lin;Liu, San-Yang
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.81-96
    • /
    • 2004
  • The level-m scaled circulant factor matrix over the complex number field is introduced. Its diagonalization and spectral decomposition and representation are discussed. An explicit formula for the entries of the inverse of a level-m scaled circulant factor matrix is presented. Finally, an algorithm for finding the inverse of such matrices over the quaternion division algebra is given.

Shortest paths calculation by optimal decomposition (최적분해법에 의한 최단경로계산)

  • 이장규
    • 전기의세계
    • /
    • v.30 no.5
    • /
    • pp.297-305
    • /
    • 1981
  • The problem of finding shortest paths between every pair of points in a network is solved employing and optimal network decomposition in which the network is decomposed into a number of subnetworks minimizing the number of cut-set between them while each subnetwork is constrained by a size limit. Shortest path computations are performed on individual subnetworks, and the solutions are recomposed to obtain the solution of the original network. The method when applied to large scale networks significantly reduces core requirement and computation time. This is demonstrated by developing a computer program based on the method and applying it to 30-vertex, 160-vertex, and 273-vertex networks.

  • PDF

High-Performance Givens Rotation-based QR Decomposition Architecture Applicable for MIMO Receiver (MIMO 수신기에 적용 가능한 고성능 기븐스 회전 기반의 QR 분해 하드웨어 구조)

  • Yoon, Ji-Hwan;Lee, Min-Woo;Park, Jong-Sun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.31-37
    • /
    • 2012
  • This paper presents an efficient hardware architecture to enable the high-speed Givens rotation-based QR decomposition. The proposed architecture achieves a highly parallel givens rotation process by maximizing the number of pivots selected for parallel zero-insertions. Sign-select lookahed (SSL)-CORDIC is also efficiently used for the high-speed givens rotation. The performance of QR decomposition hardware considerably increases compared to the conventional triangular systolic array (TSA) architecture. Moreover, the circuit area of QR decomposition hardware was reduced by decreasing the number of flip-flops for holding the pre-computed results during the decomposition process. The proposed QR decomposition hardware was implemented using TSMC $0.25{\mu}m$ technology. The experimental results show that the proposed architecture achieves up to 70 % speed-up over the TACR/TSA-based architecture for the $8{\times}8$ matrix decomposition.