• 제목/요약/키워드: decommissioning and decontamination

검색결과 85건 처리시간 0.02초

원전 제염기술 및 해외경험 분석을 통한 1차 계통 제염 적용 연구 (A Study on the Applicability for Primary System Decontamination through Analysis on NPP Decommission Technology and International Experience)

  • 송종순;정민영;이상헌
    • 방사성폐기물학회지
    • /
    • 제14권1호
    • /
    • pp.45-55
    • /
    • 2016
  • Decontamination is one of the most important technologies for the decommissioning of NPP. The purpose of decontamination is to reduce the Risk of exposure of the decommissioning workers, and to recycle parts of the plant components. Currently, there is a lack of data on the efficiency of the decontamination technologies for decommissioning. In most cases, the local radiation level can be lowered below a regulatory limitation by decontamination. Therefore, more efficient decontamination technology must be continuously developed. This work describes the practical experiences in the United States and the European countries for NPP decommissioning using these decontamination technologies. When the decommissioning of domestic nuclear power plant is planned and implemented, this work will be helpful as a reference of previous cases.

Evaluation of dissolution characteristics of magnetite in an inorganic acidic solution for the PHWR system decontamination

  • Ayantika Banerjee ;Wangkyu Choi ;Byung-Seon Choi ;Sangyoon Park;Seon-Byeong Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1892-1900
    • /
    • 2023
  • A protective oxide layer forms on the material surfaces of a Nuclear Power Plant during operation due to high temperature. These oxides can host radionuclides, the activated corrosion products of fission products, resulting in decommissioning workers' exposure. These deposited oxides are iron oxides such as Fe3O4, Fe2O3 and mixed ferrites such as nickel ferrites, chromium ferrites, and cobalt ferrites. Developing a new chemical decontamination technology for domestic CANDU-type reactors is challenging due to variations in oxide compositions from different structural materials in a Pressurized Water Reactor (PWR) system. The Korea Atomic Energy Research Institute (KAERI) has already developed a chemical decontamination process for PWRs called 'HyBRID' (Hydrazine-Based Reductive metal Ion Decontamination) that does not use organic acids or organic chelating agents at all. As the first step to developing a new chemical decontamination technology for the Pressurized Heavy Water Reactor (PHWR) system, we investigated magnetite dissolution behaviors in various HyBRID inorganic acidic solutions to assess their applicability to the PHWR reactor system, which forms a thicker oxide film.

Hydrogen isotope exchange behavior of protonated lithium metal compounds

  • Park, Chan Woo;Kim, Sung-Wook;Sihn, Youngho;Yang, Hee-Man;Kim, Ilgook;Lee, Kwang Se;Roh, Changhyun;Yoon, In-Ho
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2570-2575
    • /
    • 2021
  • The exchange behaviors of hydrogen isotopes between protonated lithium metal compounds and deuterated water or tritiated water were investigated. The various protonated lithium metal compounds were prepared by acid treatment of lithium metal compounds with different crystal structures and metal compositions. The protonated lithium metal compounds could more effectively reduce the deuterium concentration in water compared with the corresponding pristine lithium metal compounds. The H+ in the protonated lithium metal compounds was speculated to be more readily exchangeable with hydrons in the aqueous solution compared with Li+ in the pristine lithium metal compounds, and the exchanged heavier isotopes were speculated to be more stably retained in the crystal structure compared with the light protons. When the tritiated water (157.7 kBq/kg) was reacted with the protonated lithium metal compounds, the protonated lithium manganese nickel cobalt oxide was found to adsorb and retain twice as much tritium (163.9 Bq/g) as the protonated lithium manganese oxide (69.9 Bq/g) and the protonated lithium cobalt oxide (75.1 Bq/g) in the equilibrium state.

Reduction of Radioactive Waste from Remediation of Uranium-Contaminated Soil

  • Kim, Il-Gook;Kim, Seung-Soo;Kim, Gye-Nam;Han, Gyu-Seong;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.840-846
    • /
    • 2016
  • Great amounts of solid radioactive waste (second waste) and waste solution are generated from the remediation of uranium-contaminated soil. To reduce these, we investigated washing with a less acidic solution and recycling the waste solution after removal of the dominant elements and uranium. Increasing the pH of the washing solution from 0.5 to 1.5 would be beneficial in terms of economics. A high content of calcium in the waste solution was precipitated by adding sulfuric acid. The second waste can be significantly reduced by using sorption and desorption techniques on ampholyte resin S-950 prior to the precipitation of uranium at pH 3.0.

Removal of Uranium Ions in Lagoon Waste by Electrosorption

  • Jung, Chong-Hun;Won, Hui-Jun;Park, Wang-Kyu;Kim, Gye-Nam;Oh, Won-Zin;Hwang, Sung-Tai;Park, Jin-Ho
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.701-706
    • /
    • 2003
  • A study on the electrosorption of U(VI) onto porous activated carbon fibers (ACFs) was performed to treat uranium-containing lagoon sludge. Effective U(Ⅵ) removal is accomplished when a negative potential is applied to the activated carbon fiber(ACF) electrode. For a feed concentration of 100mg/L, the concentration of U(VI) in the cell effluent is reduced to less than 1mg/L. The adsorbed uranium could be deserted from the ACF by passing a 1M NaCl solution through the cell and applying a positive potential onto the electrode. The regeneration of ACF from the cycling experiments was confirmed.

  • PDF

A multi-criteria decision-making process for selecting decontamination methods for radioactively contaminated metal components

  • Inhye Hahm ;Daehyun Kim;Ho jin Ryu;Sungyeol Choi
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.52-62
    • /
    • 2023
  • Various decontamination technologies have been developed for removing contaminated areas in industries. Although it is important to consider parameters such as safety, cost, and time when selecting the decontamination technology, till date their comparative study is missing. Furthermore, different decontamination technologies influence the decontamination effects in different ways. Therefore, this study compares different decontamination techniques for the steam generator using a multicriteria decision-making method. A steam generator is a large device comprising both low- and very low-level waste (LLW, VLLW) and reflects the difference in weights of the standards according to the classification of the waste. For LLW and VLLW decontaminations, chemical oxidizing reduction decontamination (CORD) and decontamination grit blasting were used as the preferred techniques, respectively, considering the purpose of decontamination differs based on the initial state of waste. An expert survey revealed that safety in LLW and waste minimization in VLLW exhibited high preference. This evaluation method can be applied not only to the comparison between each process, but also to the creation of process scenarios. Therefore, determining the decontamination approach using logical decision-making methods may improve the safety and economic feasibility of each step in the decommissioning process and ensure a public acceptance.

원전해체를 위한 화학제염 설계 및 그 방법론에 대한 고려사항 (Chemical Decontamination Design for NPP Decommissioning and Considerations on its Methodology)

  • 박근영;김창락
    • 방사성폐기물학회지
    • /
    • 제13권3호
    • /
    • pp.187-199
    • /
    • 2015
  • 원전해체시장이 본격적으로 도래함에 따라 그에 따른 기술연구가 부각되고 있다. 그러한 기술 중 방사선 제염은 직접적인 원전해체 과정 중 가장 초반에 행해지는 작업으로 현장 근로자의 안전확보 및 폐기물 양 감소를 위해 수행되는 중요한 작업이다. 제염을 통해 폐기물 표면에 존재하는 방사선 물질을 제거하게 되는데 해체에 적용되는 제염기술은 보다 강한 매개체를 사용하거나 개선된 설비를 활용하여 표면층 제거 정도가 일반적인 제염보다 훨씬 크다. 따라서 제염 계획 수립시 다양한 관점에서 분석 방법이 필요하다. 본 연구에서는 제염기술 선정을 위해 고려해야 할 요인을 설명하였으며, 대표적인 제염기술 사례 분석을 통해 실제 기술 수행을 위해 원전 설비 내 제염 아이템 선정 및 제염 장비 활용을 위해 검토해야 할 사항을 제시하였다.