• Title/Summary/Keyword: decision matrix

Search Result 254, Processing Time 0.023 seconds

An Extended AND-OR Graph-Based Expert System in Electronic Commerce

  • 이건창;조형래;권순재
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.281-289
    • /
    • 1999
  • The objective of this paper is to propose a brand new interface mechanism to provide more intelligent decision making support for EC problems. Its main virtue is based on a numerical process mechanism by using an Extended AND-OR Graph (EAOG)-based logic algebra. Using this mechanism, decision makers engaged in electronic commerce (EC) can effectively deal with complicated decision making problems. In the field of traditional expert systems research, AND-OR Graph approach has been suggested as a useful tool for representing the logic flowchart of the forward and/or backward chaining inference methods. However, the AND-OR Graph approach cannot be effectively used in the EC problems in which real-time problem-solving property should be highly required. In this sense, we propose the EAOG inference mechanism for EC problem-solving in which heurisric knowledge necessary for intelligent EC problem-solving can be represented in a form of matrix. Finally, we have proved the validity of our approach with several propositions and an illustrative EC example

  • PDF

Study on Decision-Making Factors of Big Data Application in Enterprises: Using Company S as an Example

  • Huang, Yun Kuei;Yang, Wen I.;Chan, Ching Sen
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.4 no.1
    • /
    • pp.5-15
    • /
    • 2016
  • With vigorous development of global network community, smart phones and mobile devices, enterprises can rapidly collect various kinds of data from internal and external environments. How to discover valuable information and transform it into new business opportunities from big data which grow rapidly is an extremely important issue for current enterprises. This study treats Company S as the subject and tries to find the factors of big data application in enterprises by a modified Decision Making Trial and Evaluation Laboratory (DEMATEL) and perceived benefits - perceived barriers relation matrix as reference for big data application and management of managers or marketing personnel in other organizations or related industry.

A design of binary decision tree using genetic algorithms and its applications (유전 알고리즘을 이용한 이진 결정 트리의 설계와 응용)

  • 정순원;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.102-110
    • /
    • 1996
  • A new design scheme of a binary decision tree is proposed. In this scheme a binary decision tree is constructed by using genetic algorithm and FCM algorithm. At each node optimal or near-optimal feature subset is selected which optimizes fitness function in genetic algorithm. The fitness function is inversely proportional to classification error, balance between cluster, number of feature used. The binary strings in genetic algorithm determine the feature subset and classification results - error, balance - form fuzzy partition matrix affect reproduction of next genratin. The proposed design scheme is applied to the tire tread patterns and handwriteen alphabetic characters. Experimental results show the usefulness of the proposed scheme.

  • PDF

REAL OPTIONS VALUATION MODEL OF LINE EXPANSION PROBLEM IN THE AMOLED INDUSTRY LINE EXPANSION (리얼옵션을 활용한 AMOLED산업 라인 증설의 옵션가치)

  • Lee, Su-Jeong;Kim, Do-Hun
    • 한국경영정보학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.957-962
    • /
    • 2008
  • We propose a model for the line expansion problem in the AMOLED (Active Matrix Organic Light Emitting Diodes) industry, which now faces market uncertainty: for example, changing customer needs, technological development path, etc. We focus on the optimal investment time and size of the AMOLED production lines. In particular, employed here is the ROV (Real Options Valuation) model to show how to capture the value of line expansion and to determine the optimal investment time. The ROV framework provides a systematic procedure to quantify an expected outcome of a flexible decision which is not possible in the frame of the traditional NPV (Net Present Value) approach. Furthermore, we also use Monte Carlo simulation to measure the uncertainty associated with the line expansion decision; Monte Carlo simulation estimates the volatility of a decision alternative. Lastly, we present a scenario planning to be conducted for what-if analysis of the ROV model.

  • PDF

An MMSE Based Iterative Soft Decision Interference Cancellation Scheme for Massive MIMO Systems (대규모 다중 입출력 시스템을 위한 MMSE 기반 반복 연판정 간섭 제거 기법)

  • Park, Sangjoon;Choi, Sooyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.9
    • /
    • pp.566-568
    • /
    • 2014
  • In this letter, an MMSE based iterative soft decision interference cancellation scheme for massive MIMO systems is proposed. To reduce the complexity, the proposed scheme uses the Sherman-Morrison-Woodbury formula to compute the entire MMSE filtering vectors in one iteration by one matrix inverse operation. Simulation results show that the proposed scheme also has a comparable BER to the conventional scheme for massive MIMO systems.

물리계층 보안을 위한 보안 전처리 기법의 설계 방법

  • Gwon, Gyeong-Hun;Heo, Jun
    • Information and Communications Magazine
    • /
    • v.31 no.2
    • /
    • pp.71-82
    • /
    • 2014
  • 본 논문에서는 물리 계층에서 보안을 고려한 시스템을 제공하기 위해 Gaussian Wiretap Channel 상황에서 보안 전송을 가능하게 하는 보안 전처리 기법의 설계 방법에 대해서 살펴본다. 무선 통신 채널의 경우, 통신 채널이 누구에게나 개방되어 있기 때문에 무엇보다도 보안에 취약하다. 하지만 숨기고자 하는 보안 메시지를 채널 부호화 및 변조 과정 이전에 보안을 위한 전처리 기법을 적용함으로써 물리계층에서 데이터를 보다 안전하게 전송하는 것이 가능해진다. 이를 위해 기존의 Random하게 생성된 Scrambling matrix를 이용하여 물리계층 보안을 유지하는 전처리 기법을 바탕으로 Scrambling matrix의 hamming distance를 이용하여 높은 보안성 및 신뢰도를 가지는 Scrambling matrix 설계 방법을 제안한다. 또한 부호율 1을 가지는 soft decision decoding 기반의 새로운 보안 전처리 기법을 제안함으로써 물리계층에서의 보안성 확보 가능성을 확인하였다.

Differential Game Based Air Combat Maneuver Generation Using Scoring Function Matrix

  • Park, Hyunju;Lee, Byung-Yoon;Tahk, Min-Jea;Yoo, Dong-Wan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.204-213
    • /
    • 2016
  • A differential game theory based approach is used to develop an automated maneuver generation algorithm for Within Visual Range (WVR) air-to-air combat of unmanned combat aerial vehicles (UCAVs). The algorithm follows hierarchical decisionmaking structure and performs scoring function matrix calculation based on differential game theory to find the optimal maneuvers against dynamic and challenging combat situation. The score, implying how much air superiority the UCAV has, is computed from the predicted relative geometry, relative distance and velocity of two aircrafts. Security strategy is applied at the decision-making step. Additionally, a barrier function is implemented to keep the airplanes above the altitude lower bound. To shorten the simulation time to make the algorithm more real-time, a moving horizon method is implemented. An F-16 pseudo 6-DOF model is used for realistic simulation. The combat maneuver generation algorithm is verified through three dimensional simulations.

Identifying Core Robot Technologies by Analyzing Patent Co-classification Information

  • Jeon, Jeonghwan;Suh, Yongyoon;Koh, Jinhwan;Kim, Chulhyun;Lee, Sanghoon
    • Asian Journal of Innovation and Policy
    • /
    • v.8 no.1
    • /
    • pp.73-96
    • /
    • 2019
  • This study suggests a new approach for identifying core robot tech-nologies based on technological cross-impact. Specifically, the approach applies data mining techniques and multi-criteria decision-making methods to the co-classification information of registered patents on the robots. First, a cross-impact matrix is constructed with the confidence values by applying association rule mining (ARM) to the co-classification information of patents. Analytic network process (ANP) is applied to the co-classification frequency matrix for deriving weights of each robot technology. Then, a technique for order performance by similarity to ideal solution (TOPSIS) is employed to the derived cross-impact matrix and weights for identifying core robot technologies from the overall cross-impact perspective. It is expected that the proposed approach could help robot technology managers to formulate strategy and policy for technology planning of robot area.

Development of Diagnostic Expert Systems for A Rotor System (로터시스템의 이상진단시스템에 대한 연구)

  • Kim, Sung-Chul;Kim, Sang-Pyo;Kim, Young-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2001
  • A rotor system is composed of a rotating shaft with supporting bearings. The rotor system is widely used in every rotating machinery such as the turbine generator and the high precision machine tools. A negligible error or malfunction in the rotor, however, can cause a catastrophic failure in the system then result in the environmental and economic disasters. A diagnosis of the rotor system is important in preventing these kinds of failures and disasters. Up to now, many researchers have devoted in the development of diagnosing tools for the system. The basic principles behind the tools are to retrieve the data through the sensors for a specific state of the system and then to identify the specific state through the heuristic methods such as neural network, fuzzy logic, and decision matrix. The proper usage of the heuristic methods will enhance the performance of the diagnostic procedure when together used with the statistical signal processing. In this paper, the methodologies in using the above 3 heuristic methods for the diagnostics of the rotor system are established and also tested and validated for the data retrieved from the rolling element bearing and journal bearing supported system.

  • PDF

Pretension process control based on cable force observation values for prestressed space grid structures

  • Zhou, Zhen;Meng, Shao-Ping;Wu, Jing
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.739-753
    • /
    • 2010
  • Pointing to the design requirement of prestressed space grid structure being the target cable force, the pretension scheme decision analysis method is studied when there's great difference between structural actual state and the analytical model. Based on recursive formulation of cable forces, the simulative recursive system for pretension process is established from the systematic viewpoint, including four kinds of parameters, i.e., system initial value (structural initial state), system input value (tensioning control force scheme), system state parameters (influence matrix of cable forces), system output value (pretension accomplishment). The system controllability depends on the system state parameters. Based on cable force observation values, the influence matrix for system state parameters can be calculated, making the system controllable. Next, the pretension scheme decision method based on cable force observation values can be formed on the basis of iterative calculation for recursive system. In this way, the tensioning control force scheme that can meet the design requirement when next cyclic supplemental tension finished is obtained. Engineering example analysis results show that the proposed method in this paper can reduce a lot of cyclic tensioning work and meanwhile the design requirement can be met.