• Title/Summary/Keyword: decay resistance

Search Result 113, Processing Time 0.028 seconds

Predicting Migration of a Heavy Metal in a Sandy Soil Using Time Domain Reflectometry (TDR을 이용한 사질토양에서의 중금속 이동 추정)

  • Dong-Ju Kim;Doo-Sung Baek;Min-Soo Park
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.1
    • /
    • pp.109-118
    • /
    • 1999
  • Recently, transport parameters of conservative solutes such as KCl in a porous medium have been successfully determined using time domain reflectometry (TDR) . This study was initiated to Investigate the applicability of TDR technique to monitoring the fate of a heavy metal ion in a sandy soil and the distribution of its concentration along travel distance with time. A column test was conducted in a laboratory that consists of monitoring both resident and flux concentrations of $ZnCl_2$in a sandy soil under a breakthrough condition. A tracer of $ZnCl_2$(10 g/L) was injected onto the top surface of the sample as pulse type as soon as a steady-state condition was achieved. Time-series measurements of resistance and electrical conductivity were performed at 10 cm and 20 cm of distances from the inlet boundary by horizontal-positioning of parallel TDR metallic rods and using an EC-meter for the effluent exiting the bottom boundary respectively. In addition. Zn ions of the effluent were analyzed by ICP-AES. Since the mode and position of concentration detected by TDR and effluent were different, comparison between ICP analysis and TDR-detected concentration was made by predicting flux concentration using CDE model accommodating a decay constant with the transport parameters obtained from the resident concentrations. The experimental results showed that the resident concentration resulted in earlier and higher peak than the flux concentration obtained by EC-meter, implying the homogeneity of the packed sandy soil. A close agreement was found between the predicted from the transport parameters obtained by TDR and the measured $ZnCl_2$concentration. This indicates that TDR technique can also be applied to monitoring heavy metal concentrations in the soil once that a decay constant is obtained for a given soil.

  • PDF

Analysis of Single Crystal Silicon Solar Cell Doped by Using Atmospheric Pressure Plasma

  • Cho, I-Hyun;Yun, Myoung-Soo;Son, Chan-Hee;Jo, Tae-Hoon;Kim, Dong-Hae;Seo, Il-Won;Roh, Jun-Hyoung;Lee, Jin-Young;Jeon, Bu-Il;Choi, Eun-Ha;Cho, Guang-Sup;Kwon, Gi-Chung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.357-357
    • /
    • 2012
  • The doping process of the solar cell has been used by furnace or laser. But these equipment are so expensive as well as those need high maintenance costs and production costs. The atmospheric pressure plasma doping process can enable to the cost reduction. Moreover the atmospheric pressure plasma can do the selective doping, this means is that the atmospheric pressure plasma regulates the junction depth and doping concentration. In this study, we analysis the atmospheric pressure plasma doping compared to the conventional furnace doping. the single crystal silicon wafer doped with dopant forms a P-N junction by using the atmospheric pressure plasma. We use a P type wafer and it is doped by controlling the plasma process time and concentration of dopant and plasma intensity. We measure the wafer's doping concentration and depth by using Secondary Ion Mass Spectrometry (SIMS), and we use the Hall measurement because of investigating the carrier concentration and sheet resistance. We also analysis the composed element of the surface structure by using X-ray photoelectron spectroscopy (XPS), and we confirm the structure of the doped section by using Scanning electron microscope (SEM), we also generally grasp the carrier life time through using microwave detected photoconductive decay (u-PCD). As the result of experiment, we confirm that the electrical character of the atmospheric pressure plasma doping is similar with the electrical character of the conventional furnace doping.

  • PDF

Review of Researches on Clubroot Disease of Chinese Cabbage in Korea and Future Tasks for Its Management (우리나라 배추 뿌리혹병 연구 현홍과 향후과제)

  • Kim, Choong-Hoe;Cho, Won-Dae;Lee, Sang-Bum
    • Research in Plant Disease
    • /
    • v.9 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • Clubroot disease of curcifer crops caused by Plasmodiophora brassicae had been first reported in 1928 in Korea, and maintained mild occurrence until 1980s. Since 1990s the disease has become severe in alpine areas of Kyonggi and Kangwon, gradually spread to plain fields throughout the country, and remains as the great-est limiting factor for its production. Researches on the disease has begun in late 1990s after experiencing severe epidemics. Survey of occurrence and etiological studies have been carried out, particularly, on the pathogen physiology, race identification, quantification of soil pathogen population, and host spectrum of the pathogen. Ecology of gall formation and its decay, yield loss assessment associated with time of infection, and relationships between crop rotation and the disease incidence was also studied during late 1990s. In studies of its control, more than 200 crucifer cultivars were evaluated for their resistance to the disease. Lime applica-tion to field soil was also attempted to reduce the disease incidence. Resistant radish and welsh onion were recommended as rotation crops with crucifers after 3-year field experiments. However, so for, most studies on clubroot disease in Korea have been focused on chemical control. Two fungicides, fluazinam and flusulfamide, were selected and extensively studied on their application technologies and combination effects with lime application or other soil treatment. To develop environmentally-friendly control methods, solar-disinfection of soil, phosphoric acid as a nontoxic compound, and root-parasiting endophytes as biocontrol agents were examined for their effects on the disease in fields. In the future, more researches are needed to be done on development of resistant varieties effective to several races of the pathogen, establishment of economically-sound crop rotation system, and improvement of soil-disinfection technique applicable to Korean field condi-tion, and development of methodology of pretreatment of fungicides onto seeds and seedbeds.

The Effect of Pretreatment of Veneer on the Improvement of Plywood Quality (단판(單板)의 약제처리(藥劑處理)가 합판성질개선(合板性質改善)에 미치는 영향(影響))

  • Shim, Chong-Supp
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.152-164
    • /
    • 1982
  • 1. In order to make the improvement of plywood quality, this study has been made. The pretreatments applied to the veneers are as follows. a) The soaking treatment of the veneer in 30 percent methanol solution for 24 hours was applied to remove some resinous materials which may cause many stain discolouring on the face of finished plywood. b) The preservative treatment of the veneer in 2 percent malenit solution for 2 to 3 minutes was adopted to make resistance against decay and insect damages. c) The fire retardant treatment of the veneer in 40 percent ammonium phosphate solution for 2 hours was applied to give retardation effect against fire burning. 2. The results summarized in this study are as follows. a) One percent resinous materials was extracted, after the soaking of the veneers in 30 percent diluted methanol. b) No marks of the dirty stains of resinous materials on the face of the treated plywood was shown, although many quite dirty stains on the face of untreated plywood have contrary seen. c) However, the strip shear test strength of the treated plywood was not decreased. It means that there is no difference in the strength between the treated plywood and the untreated plywood. The strength values were 25.08 kg/$cm^2$ and 24.98 kg/$cm^2$, respectively. d) The strip shear test strength of plywood made of the treated veneers in 2 percent malenit solution was not decreased. e) The slight decrease of the strip shear test strength of the treated plywood made of the treated veneer in 40 percent ammonuim phosphate solution was shown. However, the remarkable difference of the fire retardation activities between the treated specimens and the untreated specimens has seen as in Table 10, that is, the fire proofed specimens had taken about 28 seconds to start to burn, while the untreated specimens had taken 15 seconds to reach to burning. This means that the fire retardation effect of the fire proofed plywood was greater than that of the unproofed plywood.

  • PDF

Noradrenergic Modulation of Spontaneous Inhibitory Postsynaptic Currents in the Hypothalamic Paraventricular Nucleus

  • Lee, Long-Hwa;Chong, Won-Ee;Lee, Ki-Ho;Park, Jin-Bong;Ryu, Pan-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.2
    • /
    • pp.71-80
    • /
    • 2002
  • Previous studies have suggested that brain stem noradrenergic inputs differentially modulate neurons in the paraventricular nucleus (PVN). Here, we compared the effects of norepinephrine (NE) on spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs) in identified PVN neurons using slice patch technique. In 17 of 18 type I neurons, NE $(30{\sim}100{\mu}M)$ reversibly decreased sIPSC frequency to $41{\pm}7%$ of the baseline value $(4.4{\pm}0.8\;Hz,\;p<0.001).$ This effect was blocked by yohimbine $(2{\sim}20{\mu}M),$ an ${\alpha}_2-adrenoceptor$ antagonist and mimicked by clonidine $(50{\mu}M),$ an ${\alpha}_2-adrenoceptor$ agonist. In contrast, NE increased sIPSC frequency to $248{\pm}32%$ of the control $(3.06{\pm}0.37\;Hz,\;p<0.001)$ in 31 of 54 type II neurons, but decreased the frequency to $41{\pm}7$ of the control $(5.5{\pm}1.3\;Hz)$ in the rest of type II neurons (p<0.001). In both types of PVN neurons, NE did not affect the mean amplitude and decay time constant of sIPSCs. In addition, membrane input resistance and amplitude of sIPSC of type I neurons were larger than those of type II neurons tested (1209 vs. 736 $M{\Omega},$ p<0.001; 110 vs. 81 pS, p<0.001). The results suggest that noradrenergic modulation of inhibitory synaptic transmission in the PVN decreases the neuronal excitability in most type I neurons via ${\alpha}_2-adrenoceptor,$ however, either increases in about 60% or decreases in 40% of type II neurons.

Decay Resistance of the Acetylated Tropical Hardwood Species

  • Grace, Adebawo Funke;Yekeen, Ogunsanwo Olukayode;Olalekan, Olajuyigbe Samuel
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.3
    • /
    • pp.225-232
    • /
    • 2020
  • Chemical modification of wood is an effective method to enhance the biological durability of wood with no toxic effect on the environment. In this study, wood of Triplochiton scleroxylon was modified using acetylation techniques. A total of one hundred wood blocks, (each 20×20×60 mm) obtained from a 22-year old T. scleroxylon tree were conditioned and acetylated at 120℃ in a bioreactor containing acetic anhydride for 60, 120, 180, 240 and 300 minutes. The percentage weight gain of acetylated wood was determined. The untreated (control) and treated blocks were exposed to Pleurotus ostreatus (white rot fungus) and Fibroporia vaillanti (brown rot fungus) after which moisture content (MC) and weight loss (WL) was monitored for 16 weeks. Data were analysed using descriptive and inferential statistics at p<0.05 level of significance. The percentage weight gain of acetylated wood samples increased with time from 10.4% (60 minutes) to 22.7% (300 minutes). MC of untreated blocks inoculated with Pleurotus ostreatus was significantly higher than those of Fibroporia vaillantii after 16 weeks exposure. There was no significant difference in the MC of the of the acetylated samples for the two fungi after 300 minutes reaction time. The WL of untreated blocks inoculated with Fibroporia vaillantii was higher than those of Pleurotus ostreatus, however, the two fungi showed no significant difference in the WL for the acetylated samples after 16 weeks exposure. Acetylation prevents moisture absorption and inhibition of fungi growth in acetylated wood compared to untreated wood, thereby enhancing the durability of Triplochiton scleroxylon.

The Kinetics of Anodic Dissolution and Repassivation on 316L Stainless Steel in Borate Buffer Solution Studied by Abrading Electrode Technique

  • Xu, H.S.;Sun, D.B.;Yu, H.Y.;Meng, H.M.
    • Corrosion Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.261-266
    • /
    • 2015
  • The capacity of passive metal to repassivate after film damage determines the development of local corrosion and the resistance to corrosion failures. In this work, the repassivation kinetics of 316L stainless steel (316L SS) was investigated in borate buffer solution (pH 9.1) using a novel abrading electrode technique. The repassivation kinetics was analyzed in terms of the current density flowing from freshly bare 316L SS surface as measured by a potentiostatic method. During the early phase of decay (t < 2 s), according to the Avrami kinetics-based film growth model, the transient current was separated into anodic dissolution ($i_{diss}$) and film formation ($i_{film}$) components and analyzed individually. The film reformation rate and thickness were compared according to applied potential. Anodic dissolution initially dominated the repassivation for a short time, and the amount of dissolution increased with increasing applied potential in the passive region. Film growth at higher potentials occurred more rapidly compared to at lower potentials. Increasing the applied potential from 0 $V_{SCE}$ to 0.8 $V_{SCE}$ resulted in a thicker passive film (0.12 to 0.52 nm). If the oxide monolayer covered the entire bare surface (${\theta}=1$), the electric field strength through the thin passive film reached $1.6{\times}10^7V/cm$.

The Effect of Mechanical Grinding or Electrochemical Properties of $CaNi_5$ Hydrogen Storage Alloy ($CaNi_5$ 수소저장합금의 전기화학 특성에 미치는 MG 처리 효과)

  • Lee C. R.;Kang S. G.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.106-111
    • /
    • 1999
  • The effect of the MG on the electrochemical charge-discharge properties of $CaNi_5$ hydrogen storage alloys was investigated under Ar and $H_2$ atmosphere. $CaNi_5$ alloy was partially decomposed to CaO and Ni phase during the MG process. The decomposition of $CaNi_5$ alloy was enhanced by the MG process which leads to crash and reformation of oxide layer on the alloy surface. As the MG process time increased, initial discharge capacity of the electrode was reduced, but the decay rate of the capacity compared to $CaNi_5$ alloys was slower. It may be described that the degradation of $MG-CaNi_5$ electrode was caused by the reduction of the reversible hydrogen reaction sites and increasing polarization resistance of hydrogen adsorption resulted from phase decomposition and disorder during the MG process, and/or by hydroxide formation during the electrochemical charge-discharge cycles.

Performance-based and damage assessment of SFRP retrofitted multi-storey timber buildings

  • Vahedian, Abbas;Mahini, Seyed Saeed;Glencross-Grant, Rex
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.269-282
    • /
    • 2015
  • Civil structures should be designed with the lowest cost and longest lifetime possible and without service failure. The efficient and sustainable use of materials in building design and construction has always been at the forefront for civil engineers and environmentalists. Timber is one of the best contenders for these purposes particularly in terms of aesthetics; fire protection; strength-to-weight ratio; acoustic properties and seismic resistance. In recent years, timber has been used in commercial and taller buildings due to these significant advantages. It should be noted that, since the launch of the modern building standards and codes, a number of different structural systems have been developed to stabilise steel or concrete multistorey buildings, however, structural analysis of high-rise and multi-storey timber frame buildings subjected to lateral loads has not yet been fully understood. Additionally, timber degradation can occur as a result of biological decay of the elements and overloading that can result in structural damage. In such structures, the deficient members and joints require strengthening in order to satisfy new code requirements; determine acceptable level of safety; and avoid brittle failure following earthquake actions. This paper investigates performance assessment and damage assessment of older multi-storey timber buildings. One approach is to retrofit the beams in order to increase the ductility of the frame. Experimental studies indicate that Sprayed Fibre Reinforced Polymer (SFRP) repairing/retrofitting not only updates the integrity of the joint, but also increases its strength; stiffness; and ductility in such a way that the joint remains elastic. Non-linear finite element analysis ('pushover') is carried out to study the behaviour of the structure subjected to simulated gravity and lateral loads. A new global index is re-assessed for damage assessment of the plain and SFRP-retrofitted frames using capacity curves obtained from pushover analysis. This study shows that the proposed method is suitable for structural damage assessment of aged timber buildings. Also SFRP retrofitting can potentially improve the performance and load carrying capacity of the structure.

Understanding the Technical Properties of Delonix regia (HOOK.) RAF. Wood: A Lesser Used Wood Species

  • Funke Grace Adebawo;Olayiwola Olaleye Ajala;Olaoluwa Adeniyi Adegoke;Timileyin Samuel Aderemi
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • Properties of a lesser-used wood species were investigated to determine its potential for structural utilization. Trees of Delonix regia were felled and sampled at the base, middle and top and then sectioned to inner wood, middle wood, and outer wood for variation across the axial and radial directions. Hence, selected physical and mechanical properties as well as natural durability of D. regia along the radial and axial directions were examined. Obtained data were analyzed using analysis of variance (ANOVA) at α0.05. There was no significant difference in the Moisture content (MC) of the wood but specific gravity (SG) decreased from base to top ranging from 0.35-0.44. Water absorption, volumetric swelling, and volumetric shrinkage range from 46.18-51.86%, 2.57-4.02%, and 2.26-3.96% respectively along the axial plane. The weight loss for graveyard exposure and accelerated laboratory decay test ranged from 25.14-48.00% and 32.02-44.45% respectively. Modulus of Rupture and Modulus of Elasticity values range from 29.42-72.68 Nmm2 and 3,834.54-8,830.37 Nmm2 respectively. The SG values has confirmed the species as a medium density wood and values of other properties tested showed that the wood is dimensional stable and moderately resistance to fungi and termite. Hence, it could be used for light construction purposes such as furniture and other interior woodwork.