• Title/Summary/Keyword: decay model

Search Result 515, Processing Time 0.024 seconds

Molecular Conductance Switching Processes through Single Ruthenium Complex Molecules in Self-Assembled Monolayers

  • Seo, So-Hyeon;Lee, Jeong-Hyeon;Bang, Gyeong-Suk;Lee, Hyo-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.27-27
    • /
    • 2011
  • For the design of real applicable molecular devices, current-voltage properties through molecular nanostructures such as metal-molecule-metal junctions (molecular junctions) have been studied extensively. In thiolate monolayers on the gold electrode, the chemical bonding of sulfur to gold and the van der Waals interactions between the alkyl chains of neighboring molecules are important factors in the formation of well-defined monolayers and in the control of the electron transport rate. Charge transport through the molecular junctions depends significantly on the energy levels of molecules relative to the Fermi levels of the contacts and the electronic structure of the molecule. It is important to understand the interfacial electron transport in accordance with the increased film thickness of alkyl chains that are known as an insulating layer, but are required for molecular device fabrication. Thiol-tethered RuII terpyridine complexes were synthesized for a voltage-driven molecular switch and used to understand the switch-on mechanism of the molecular switches of single metal complexes in the solid-state molecular junction in a vacuum. Electrochemical voltammetry and current-voltage (I-V) characteristics are measured to elucidate electron transport processes in the bistable conducting states of single molecular junctions of a molecular switch, Ru(II) terpyridine complexes. (1) On the basis of the Ru-centered electrochemical reaction data, the electron transport rate increases in the mixed self-assembled monolayer (SAM) of Ru(II) terpyridine complexes, indicating strong electronic coupling between the redox center and the substrate, along the molecules. (2) In a low-conducting state before switch-on, I-V characteristics are fitted to a direct tunneling model, and the estimated tunneling decay constant across the Ru(II) terpyridine complex is found to be smaller than that of alkanethiol. (3) The threshold voltages for the switch-on from low- to high-conducting states are identical, corresponding to the electron affinity of the molecules. (4) A high-conducting state after switch-on remains in the reverse voltage sweep, and a linear relationship of the current to the voltage is obtained. These results reveal electron transport paths via the redox centers of the Ru(II) terpyridine complexes, a molecular switch.

  • PDF

An Analysis of the Loss of Residual Heat Removal System Event for Pressurized Water Reactor at Reduced Inventory Operation (가압경수로의 저수위 운전시 잔열제거계통 상실사고에 대한 분석)

  • Han, Kee-Soo;Song, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.645-660
    • /
    • 1995
  • The loss of Residual Heat Removal System (RHRS) event during reduced inventory operation for the Korean Standard Nuclear Power Plants (KSNPPS) is simulated by RELAP5/MOD3 and RELAP5/MOD3.1 Tn cases are considered : Base case for an intact Reactor Coolant System (RCS) with no tent and a vent case for an open system. Comparative simulations of base case are peformed by RELAP5/MOD3 and RELAP5/MOD3. 1 computer codes. The results of too simulations are generally in good qualitative and quantitative agreement. However, since the results of RELAP5/MOD3 simulation reveals the deficiency of RELAP5/MOD3 wall heat model, the RELAP5/AOD3.1 computer code is used for the simulation of the vent case. The analysis result of base case show that two steam generators are insufficient to remove decay heat at one day after shutdown, where the RCS is closed. The RCS pressure increased continuously and reached the RCS temporary boundaries design pressure of 0.24 MPa around 4,000 seconds. In the vent case with a flow capacity equivalent to three times the capacity of Pressurizer Safety Valve (PSV), it is shown that the RCS Pressure does not reach 0.24 MPa and core uncovery does not occur until 10,000 seconds. The detailed discussions on the results of this study suggest the feasibility of RELAP5/AOD3.1 as an analysis tool for the simulation of the loss of RHRS event at reduced inventory operation. The results of this study also provide insight for the determination of proper vent capacity.

  • PDF

이성체쌍의 열중성자포획단면적비 측정

  • Park, Hy-Eil;Kim, Heon-Jun;Lee, Chul
    • Nuclear Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.340-344
    • /
    • 1972
  • Isomeric ratios were measured for the capture of thermal neutron by $^{79}$ Br, $^{80}$ Se, $^{103}$ Rh, $^{115}$ In and $^{133}$ Cs as well as those of epi-cadmium neutron by $^{79}$ Br, $^{80}$ Se and $^{l33}$Cs. The measurements were performed by analysing decay curves obtained by ${\gamma}$-ray spectrometry after irradiation. The counting efficiency curve was determined by using the calibrated standard sources with overall uncertainties of about 1%. Isomeric ratios, given in $\sigma$ high spin/($\sigma$ high spin + $\sigma$ low spin), of $^{80, 80m}$Br, $^{81,81m}$Se, $^{014, 104m}$Rh, $^{116,116m}$In and $^{134, 134m}$Cs produced by thermal neutron activation were found to be 0.21$\pm$0.01, 0.14$\pm$0.02, 0.12$\pm$0.02, 0.69$\pm$0.07 and 0.058$\pm$0.004, respectively, Those values of $^{80, 80m}$Br, $^{81,81m}$Se, and $^{134, 134m}$Cs Produced by epi-cadmium neutron were found to be 0.19$\pm$0.02, 0.29$\pm$0.02 and 0.074$\pm$0.011, respectively. The experimental values obtained were compared with the theoretical values deduced from the statistical model. There were the general agreements between the theory and the experiment.t.

  • PDF

Joint Price and Lot-size Determination for Decaying Items with Ordering Cost Inclusive of a Freight Cost under Trade Credit in a Two-stage Supply Chain (2 단계 신용거래 공급망에서 운송비용이 포함된 주문 비용을 고려한 퇴화성제품의 재고정책 및 판매가격 결정 모형)

  • Shinn, Seong-Whan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.191-197
    • /
    • 2020
  • As an effective means of price discrimination, some suppliers offer trade credit to the distributors for the purpose of increasing the demand of the product they produce. The availability of the delay in payments from the supplier enables discount of the distributor's selling price from a wider range of the price option in anticipation of increased customer's demand. In this regard, we consider the problem of determining the distributor's optimal price and lot size simultaneously when the supplier permits delay in payments for an order of a product whose demand rate is represented by a constant price elasticity function. It is assumed that the distributor pays the shipping cost for the order and hence, the distributor's ordering cost consists of a fixed ordering cost and the shipping cost that depend on the order quantity. For the analysis, it is also assumed that inventory is depleted not only by customer's demand but also by decay. We are able to develop a solution algorithm from the properties of the mathematical model. A numerical example is presented to illustrate the algorithm developed.

Evaluation of Effective Dose and Exposure Levels of Radon in Office and Plant Buildings (일부 제조업 사업장의 사무 및 공장동에서의 라돈농도 수준 및 유효선량 평가)

  • Chung, Eun Kyo;Kim, Ki Woong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.1
    • /
    • pp.38-45
    • /
    • 2017
  • Objectives: Radon may be second only to smoking as a cause of lung cancer. Radon is a colorless, tasteless radioactive gas that is formed via the radioactive decay of radium. Therefore, radon levels can build up based on the amount of radium contained in construction materials such as phospho-gypsum board or when ventilation rates are low. This study provides our findings from evaluation of radon gas at facilities and offices in an industrial complex. Methods: We evaluated the office rooms and processes of 12 manufacturing factories from May 14, 2014 to September 23, 2014. Short-term data were measured by using real-time monitoring detectors(Model 1030, Sun Nuclear Co., USA) indoors in the office buildings. The radon measurements were recorded at 30-minute intervals over approximately 48 hours. The limit of detection of this instrument is $3.7Bq/m^3$. Also, long-term data were measured by using ${\alpha}-track$ radon detectors(${\alpha}-track$, Rn-tech Co., Korea) in the office and factory buildings. Our detectors were exposed for over 90 days, resulting in a minimum detectable concentration of $7.4Bq/m^3$. Detectors were placed 150-220 cm above the floor. Results: Radon concentrations averaged $20.6{\pm}17.0Bq/m^3$($3.7-115.8Bq/m^3$) in the overall area. The monthly mean concentration of radon by building materials were in the order of gypsum>concrete>cement. Radon concentrations were measured using ${\alpha}-track$ in parallel with direct-reading radon detectors and the two metric methods for radon monitoring were compared. A t-test for the two sampling methods showed that there is no difference between the average radon concentrations(p<0.05). Most of the office buildings did not have central air-conditioning, but several rooms had window- or ceiling-mounted units. Employees could also open windows. The first, second and third floors were used mainly for office work. Conclusions: Radon levels measured during this assessment in the office rooms of buildings and processes in factories were well below the ICRP reference level of $1,000Bq/m^3$ for workplaces and also below the lower USEPA residential guideline of $148Bq/m^3$. The range of indoor annual effective dose due to radon exposure for workers working in the office and factory buildings was 0.01 to 1.45 mSv/yr. Construction materials such as phospho-gypsum board, concrete and cement were the main emission sources for workers' exposure.

Chain Length Effect on the Configurational Properties of an n-Alkane Chain in Solution

  • Jeon, Seung-Ho;Ree, Tai-Kyue;Oh, In-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.367-371
    • /
    • 1986
  • Dynamic and equilibrium properties of n-alkane chains immersed in solvent molecules have been investigated by a molecular dynamics method. The n-alkane chain is assumed to be a chain of elements (CH$_2$) interconnected by bonds having a fixed bond length and bond angle, but each bond of the chain is allowed to execute hindered internal rotation. We studied the effect of the number of the chain elements (N$_c$ = 10, 15 and 20) on the equilibrium properties of the system, e.g., the pair correlation functions between a chain element and solvent molecules, g$_{cs}$(r), and between the chain elements, g$_{cc}$(r), and the configurational properties such as the mean-square end-to-end distance < R$^2$ >, the mean-square radius of gyration < S$^2$ >, and the eigenvalues of the moment-of-inertia tensor < S$_i^2$ > / < S$^2$ > (i = 1, 2 and 3). We also studied the dynamic properties of the system, e.g., the autocorrelation function C(A;t) where A = R$^2$(t), = S$^2$(t), or = ${\vec{V}}(t)({\vec{V}}$ = velocity of the center of mass), and the diffusion coefficient D. The g$_{cs}$(r)'s are almost equal irrespective of the change of Nc while g$_{cc}$(r) becomes larger as N$_c$ increases; The MD computed configurational properties < R$^2$2 > and < S$^2$ > were found to be a little different from the values calculated from the statistical equations of < R$^2$ > and < S$^2$ >, it may be due to the fact that our model for the MD simulations includes a long-range volume effect. From the < S$_i^2$ > / < S$^2$ >, it is found that the chain molecule has a nearly spherical shape irrespective of the variation of N$_c$. For the dynamic properties we found that the C(R$^2$;t) and C(S$^2$;t) of lower N$_c$ decay faster than those of higher N$_c$, while the C($\vec V$;t) of the center of mass in the chain is weakly dependent on the N$_c$. The center of mass diffusion coefficient D$_c$ decreases as N$_c$ increases while the end point diffusion coefficient D$_e$ is nearly equal irrespective of the change of N$_c$.

Extraction of Snowmelt Parameters using NOAA AVHRR and GIS Technique for 7 Major Dam Watersheds in South Korea (NOAA AVHRR 영상 및 GIS 기법을 이용한 국내 주요 7개 댐 유역의 융설 매개변수 추출)

  • Shin, Hyung Jin;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.177-185
    • /
    • 2008
  • Accurate monitoring of snow cover is a key component for studying climate and global as well as for daily weather forecasting and snowmelt runoff modelling. The few observed data related to snowmelt was the major cause of difficulty in extracting snowmelt factors such as snow cover area, snow depth and depletion curve. Remote sensing technology is very effective to observe a wide area. Although many researchers have used remote sensing for snow observation, there were a few discussions on the characteristics of spatial and temporal variation. Snow cover maps were derived from NOAA AVHRR images for the winter seasons from 1997 to 2006. Distributed snow depth was mapped by overlapping between snow cover maps and interpolated snowfall maps from 69 meteorological observation stations. Model parameters (Snow Cover Area: SCA, snow depth, Snow cover Depletion Curve: SDC) were built for 7 major watersheds in South Korea. The decrease pattern of SCA for time (day) was expressed as exponentially decay function, and the determination coefficient was ranged from 0.46 to 0.88. The SCA decreased 70% to 100% from the maximum SCA when 10 days passed.

Comparative Evaluation of Behavior Analysis of Rectangular Jet and Two-dimensional Jet (사각형제트와 2차원제트의 거동해석의 비교 평가)

  • Kwon, Seok Jae;Cho, Hong Yeon;Seo, Il Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.641-649
    • /
    • 2006
  • The behavior of a three-dimensional pure rectangular water jet with aspect ratio of 10 was experimentally investigated based on the results of the mean velocity field obtained by PIV. The saddle back distribution was observed in the lateral distribution along the major axis. The theoretical centerline velocity equation derived from the point source concept using the spreading rate for the axisymmetric jet was in good agreement with the measured centerline velocity and gave the division of the potential core region, two-dimensional region, and axisymmetric region. The range of the two-dimensional region divided by the criterion of the theoretical centerline velocity decay for the aspect ratio of 10 was observed to be smaller than that of the transition region. The applicability of the two-dimensional model to the behavior of the rectangular jet with low aspect ratio or the wastewater discharged from a multiport diffuser in the deep water of real ocean may result in significant error in the transition and axisymmetric regions after the two-dimensional region. In the two-dimensional region, the Gaussian constant tended to be conserved, and the spreading rate slightly decreased at the end of the two-dimensional region. The normalized turbulent intensity along the centerline of the jet initially abruptly increased and showed relatively higher intensity for higher Reynolds number.

Experimental Study on the Analysis and Estimation of Metacentric Height in Response to Roll Period and Moment of Inertia Variations in Ships (선박의 횡요주기와 관성모멘트 변화에 따른 GM 추정 및 분석을 위한 실험 연구)

  • LeeChan Choi;JungHwi Kim;DongHyup Youn
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.380-388
    • /
    • 2023
  • This study estimates the metacentric height (GM) of a model ship by varying the transverse weight distribution, considering the effects of the roll period and moment of inertia, and compares it with the GM values measured by the inclining test. In the process, the relationship between the values is analyzed. Three types of ships-a 7-ton fishing vessel, 20-ton fishing vessel, and KRISO Very Large Crude-oil Carrier (KVLCC)-were used for the experiment and comparison. The roll period and moment of inertia were measured using the free roll decay and swing frame tests, and the GM was measured using inclining test. The estimated GM from the roll period and moment of inertia showed the same trend as the GM measured using the inclining test in the change of the weight distribution. However, the GM values measured using the inclining test were lower. Therefore, additional correction factors or parameters other than the roll period and moment of inertia are necessary for estimating GM. In the future, the relationship between the weight center and the estimated GM will be analyzed to derive the correction factors.

Estimation of Groundwater Recharge by Considering Runoff Process and Groundwater Level Variation in Watershed (유역 유출과정과 지하수위 변동을 고려한 분포형 지하수 함양량 산정방안)

  • Chung, Il-Moon;Kim, Nam-Won;Lee, Jeong-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.19-32
    • /
    • 2007
  • In Korea, there have been various methods of estimating groundwater recharge which generally can be subdivided into three types: baseflow separation method by means of groundwater recession curve, water budget analysis based on lumped conceptual model in watershed, and water table fluctuation method (WTF) by using the data from groundwater monitoring wells. However, groundwater recharge rate shows the spatial-temporal variability due to climatic condition, land use and hydrogeological heterogeneity, so these methods have various limits to deal with these characteristics. To overcome these limitations, we present a new method of estimating recharge based on water balance components from the SWAT-MODFLOW which is an integrated surface-ground water model. Groundwater levels in the interest area close to the stream have dynamics similar to stream flow, whereas levels further upslope respond to precipitation with a delay. As these behaviours are related to the physical process of recharge, it is needed to account for the time delay in aquifer recharge once the water exits the soil profile to represent these features. In SWAT, a single linear reservoir storage module with an exponential decay weighting function is used to compute the recharge from soil to aquifer on a given day. However, this module has some limitations expressing recharge variation when the delay time is too long and transient recharge trend does not match to the groundwater table time series, the multi-reservoir storage routing module which represents more realistic time delay through vadose zone is newly suggested in this study. In this module, the parameter related to the delay time should be optimized by checking the correlation between simulated recharge and observed groundwater levels. The final step of this procedure is to compare simulated groundwater table with observed one as well as to compare simulated watershed runoff with observed one. This method is applied to Mihocheon watershed in Korea for the purpose of testing the procedure of proper estimation of spatio-temporal groundwater recharge distribution. As the newly suggested method of estimating recharge has the advantages of effectiveness of watershed model as well as the accuracy of WTF method, the estimated daily recharge rate would be an advanced quantity reflecting the heterogeneity of hydrogeology, climatic condition, land use as well as physical behaviour of water in soil layers and aquifers.