• Title/Summary/Keyword: decay model

Search Result 511, Processing Time 0.022 seconds

Numerical Simulation of Growth/Decay of Algae using Equivalent Tracking Method of Decay Coefficient (감쇠계수 등가추적법을 이용한 조류 생장/소멸 수치모의)

  • Park, Inhwan;Kim, Sung Hoon;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.78-83
    • /
    • 2018
  • Previous researches on the analysis of algae concentration were restricted to applying single-valued decay coefficient during simulation period, and the accuracy as well as the applicability were severely challenged. In this study, an equivalent tracking method of decay coefficient was proposed by introducing the time-series decay coefficients and restart option. Dye module in EFDC model was employed to route the temporal variation of Chl-a concentration. It was shown that the simulation results can be significantly improved up to 46% when the equivalent tracking method was activated.

THE TRANSPORT OF NUCLEAR CONTAMINATION IN FRACTURED POROUS MEDIA

  • Jim-Douglas, Jr.;Anna M.Spagnuolo
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.723-761
    • /
    • 2001
  • The objects of this paper are to formulated a model for the transport of a chain of radioactive waste products in a fractured porous medium, to devise an effective and efficient numerical method for approximating the solution of the model, and to demonstrated the convergence of the numerical method. The formulation begins from a model in an unfractured (single porosity) medium, passes through a double porosity model in a fractured medium, and ends with a modified single porosity model that takes the relevant time scales of the flow and the nuclear decay.

  • PDF

Decay Rate of the Nitrogen Dioxide in Indoor Residence Using Mass Balance Model (물질수지 모델을 이용한 주택 실내의 이산화질소 감소율)

  • 유승진;배현주;양원호;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.2
    • /
    • pp.145-152
    • /
    • 2001
  • The purpose of this study was to determine nitrogen dioxide(NO$_2$) decay rate by reaction between NO$_2$ and interior materials in Korean residence. The results of this research could be helpful to choose the interior construction materials and to study on reduction of indoor air pollutants. The results of this research are as follows; For 30 residences in Seoul and Incheon from October 2000 to march 2001, the mean of infiltration rate was 0.70$\pm$0.44 ACH, and single-detached houses (7 houses) and apartments (19 houses) were 0.97$\pm$0.55 ACH and 0.61$\pm$0.34 ACH, respectively. The $CO_2$ decay followed approximately first-order process ($R^2$=0.97$\pm$0.02). There existed a statistic significance in filtration rate between houses built in 1980’s and built in 1990’s by t-test (p<0.02). Mean of NO$_2$ decay rates in 26 residence3s except 4 residences was 0.94$\pm$0.49hr$^{-1}$ , and also 0.86$\pm$0.49hr$^{-1}$ , 0.97$\pm$0.50hr$^{-1}$ in single-detached houses and apartments, respectively. Mean NO$_2$ decay rates in houses built in 1980’s were 0.78$\pm$0.37hr$^{-1}$ , 1.33$\pm$1.03hr$^{-1}$ , respectively. Nothing were showed statistical significance among indoor temperature, indoor humidity, and NO$_2$ decay rate. However, NO$_2$ decay rates had a tendency to increase by increase of temperature and humidity. Average volume/surface of participated houses was 0.55$\pm$0.07m and mean NO$_2$ deposition velocity was calculated as 1.46$\pm$0.59msec$^{-1}$ .

  • PDF

Continous rail absorber design using decay rate calculation in FEM

  • Molatefi, Habibollah;Izadbakhsh, Soroush
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.455-466
    • /
    • 2013
  • In recent years, many countries have added railway noise to the issues covered by noise regulations. It is known that the rail is the dominant source of rolling noise at frequency range of 500Hz-2000Hz for the conventional speeds (<160km/h). One of the effective ways to reduce noise from railway track is using a rail vibration absorber. To study the acoustic performance of rail absorber, the decay rates of vibration have long been used by researcher. In this paper, A FE model of a periodic supported rail with infinite element in ABAQUS is developed to study the acoustic performance of the rail absorber. To compute the decay rates, acceleration responses along the rail transferred to MATLAB to obtain response levels in frequency domain and then by processing the response levels, the decay rates obtained for each1/3octav band. Continous rail absorber is represented by a steel layer and an elastomer layer. The decay rates for conventional rail and rail with one-side absorber and also, the rail with two side absorber are obtained and compared. Then, to improve the system of rail absorber, a steel plate with elastomer layer is added to bottom of the rail foot. The vertical decay rate results show that the decay rate of rail vibration along the track is significantly increased around the tuned frequency of the absorber and thus the rail vibration energy is substantially reduced in the corresponding frequency region and also effective in rail noise reduction.

Simulation of chlorine decay by waterhammer in water distribution system based on hypothetical water demand curve (가상의 물 수요곡선에 따른 수충격에 의한 염소농도변동 모의연구)

  • Baek, Dawon;Kim, Hyunjun;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.107-113
    • /
    • 2018
  • Maintaining adequate residual chlorine concentration is an important criteria to provide secure drinking water. The chlorine decay can be influenced by unstable flow due to the transient event caused by operation of hydraulic devices in the pipeline system. In order to understand the relationship between the transient event and the chlorine decay, the probability density function based on the water demand curve of a hypothetical water distribution system was used. The irregular transient events and the same number of events with regular interval were assumed and the fate of chlorine decay was compared. The chlorine decay was modeled using a generic chlorine decay model with optimized parameters to minimize the root mean square error between the experimental chlorine concentration and the simulated chlorine concentration using genetic algorithm. As a result, the chlorine decay can be determined through the number of transients regardless of the occurrence intervals.

Uncertainty analyses of spent nuclear fuel decay heat calculations using SCALE modules

  • Shama, Ahmed;Rochman, Dimitri;Pudollek, Susanne;Caruso, Stefano;Pautz, Andreas
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2816-2829
    • /
    • 2021
  • Decay heat residuals of spent nuclear fuel (SNF), i.e., the differences between calculations and measurements, were obtained previously for various spent fuel assemblies (SFA) using the Polaris module of the SCALE code system. In this paper, we compare decay heat residuals to their uncertainties, focusing on four PWRs and four BWRs. Uncertainties in nuclear data and model inputs are propagated stochastically through calculations using the SCALE/Sampler super-sequence. Total uncertainties could not explain the residuals of two SFAs measured at GE-Morris. The combined z-scores for all SFAs measured at the Clab facility could explain the resulting deviations. Nuclear-data-related uncertainties contribute more in the high burnup SFAs. Design and operational uncertainties tend to contribute more to the total uncertainties. Assembly burnup is a relevant variable as it correlates significantly with the SNF decay heat. Additionally, burnup uncertainty is a major contributor to decay heat uncertainty, and assumptions relating to these uncertainties are crucial. Propagation of nuclear data and design and operational uncertainties shows that the analyzed assemblies respond similarly with high correlation. The calculated decay heats are highly correlated in the PWRs and BWRs, whereas lower correlations were observed between decay heats of SFAs that differ in their burnups.

Estimation of CBOD Decay Rate for the Execution of Water Quality Model in the Nakdong-River Basin (낙동강에서 수질모델 실행을 위한 탈산소계수의 평가)

  • Yu, Jae-Jeong;Yoon, Young-Sam;Lee, Hae-Jin;Kim, Moon-Soo;Yang, Sang-yong;Lee, Young Joon
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.511-515
    • /
    • 2005
  • CBOD(carbonaceous BOD) decay rate was investigated for the execution of water quality model in Nakdong-Rive basin. Estimation of laboratory-derived CBOD decay rate, $k_l$ and CBOD decay rate in natural waters, $k_d$ were carried out. Hydraulic factors were applied for the calculation of $k_d$. Values of biochemical oxygen demand were investigated in Weagwan, Koreong, Jeokpo, Namgi and Mulgeom sites for the four times. The ranges of $k_l$ value were $0.04{\pm}0.01{\sim}0.14{\pm}0.03$. The values of $k_l$ in upstream sites were much larger than those in the downstream sites. The values of $k_d$ were 0.025, 0.036, 0.005 and 0.001 at Weagwan, Jeokpo, Namgi and Mulgeom, respectively, indicating that values of $k_d$ were generally larger than those of $k_l$.

Prediction of Chlorine Concentration in a Pilot-Scaled Plant Distribution System (Pilot 규모의 모의 관망에서의 염소 농도 예측)

  • Kim, Hyun Jun;Kim, Sang Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.861-869
    • /
    • 2012
  • The chlorine's residual concentration prevents the regrowth of microorganism in water transport along the pipeline system. Precise prediction of chlorine concentration is important in determining disinfectant injection for the water distribution system. In this study, a pilot scale water distribution system was designed and fabricated to measure the temporal variation of chlorine concentration for three flow conditions (V = 0.88, 1.33, 1.95 m/s). Various kinetic models were applied to identify the relationship between hydraulic condition and chlorine decay. Genetic Algorithm (GA) was integrated into five kinetic models and time series of chlorine were used to calibrate parameters. Model fitness was compared by Root Mean Square Error (RMSE) between measurement and prediction. Limited first order model and Parallel first order showed good fitness for prediction of chlorine concentration.

A Study on the Analysis of Correlation Decay Distance(CoDecDist) Model for Enhancing Spatial Prediction Outputs of Spatially Distributed Wind Farms (풍력발전출력의 공간예측 향상을 위한 상관관계감소거리(CoDecDist) 모형 분석에 관한 연구)

  • Hur, Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.80-86
    • /
    • 2015
  • As wind farm outputs depend on natural wind resources that vary over space and time, spatial correlation analysis is needed to estimate power outputs of wind generation resources. As a result, geographic information such as latitude and longitude plays a key role to estimate power outputs of spatially distributed wind farms. In this paper, we introduce spatial correlation analysis to estimate the power outputs produced by wind farms that are geographically distributed. We present spatial correlation analysis of empirical power output data for the JEJU Island and ERCOT ISO (Texas) wind farms and propose the Correlation Decay Distance (CoDecDist) model based on geographic correlation analysis to enhance the estimation of wind power outputs.

Estimation of 222Rn Concentration in the Lower Troposphere during Precipitation Using Wet Scavenging Model for its Decay Products

  • Takeyasu, Masanori;Takeishi, Minoru
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.1
    • /
    • pp.20-25
    • /
    • 2010
  • The gaseous $^{222}Rn$ concentration at the level of clouds was estimated by using the wet scavenging model of its decay products with the observed data of environmental radiation at the ground. And the origin of the $^{222}Rn$ was also discussed. The estimation was done for a precipitation event on Dec. 26-27, 2003, when a large increase of the radiation was observed in Tokai-mura in Ibaraki, Japan. From a backward trajectory analysis, the origin of $^{222}Rn$ atoms for that event was traced back to the northeastern part of China, and it was expected that the large amount of $^{222}Rn$ emitted in the northeastern part of China was transported to Tokai-mura by the Eurasian continental air mass.