• Title/Summary/Keyword: decay fungi

Search Result 96, Processing Time 0.03 seconds

Decay Resistance and Effectiveness of CCA Preservative against Decay on the 4 Imported Softwoods (수입침엽수(輸入針葉樹) 4수종(樹種)의 내후성(耐朽性) 및 CCA계(系) 목재방부제(木材防腐劑) 처리(處理)에 따른 방부효과(防腐效果))

  • Lee, Jong Shin;Kim, Young Sik;Han, Kie Sun
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.1
    • /
    • pp.42-48
    • /
    • 1995
  • With the aim to investigation of decay resistance and optimum concentration in chrome-copper-arsenic(CCA) preservative treatment on the imported softwoods from Siberia and North america, preservative absorption after CCA impregnation, weight losses and degradation patterns by decay fungi were examined. The density and latewood rate of Siberia softwoods(Spruce and Larch) were higher than those of North america softwoods(Douglas-fir and Western hemlock), resulting in the decrease of the CCA preservative absorption in the Siberia softwoods. In the case of untreated softwoods, decay resistance against Coriolus versicolor was lower than against Tyromyces palustris. For CCA treated softwoods, preservative effectiveness increased with increase in concentration of CCA solution. When treated with 0.7% CCA solution, efficiency value was more than 80 and 90 for C. versicolor and T. palustris, respectively. From this results, in the CCA preservative treatment for imported softwoods, it can be concluded that optimum concentration of CCA solution is approximately 0.7%. The absorption of CCA preservative distributed in the range of 3.8 and $5.5kg/m^3$. After exposure to testing fungi, in the untreated softwoods, bore holes formed in the cell walls and bordered pits, moreover, bordered pit canals enlarged by the fungi. However, 0.5% CCA treated softwoods was almost no deterioration in the cell walls and bordered pits due to decay.

  • PDF

Lignin Degradation of Pine Wood by Unidentified Decay Fungi and Observation by Scanning Electron Microscope (미동정 부후균에 의한 소나무재의 Lignin 분해와 주사전자현미경(SEM)을 이용한 관찰)

  • Park, Heon;Min, Kyeong-Heui
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.71-80
    • /
    • 2003
  • The lignin degrading fungi were isolated from decayed woods and fruiting bodies gathered in forest area. Lignin degradation ability was investigated by Klason lignin of microbial treated pine wood. Among selected fungi, CJ-6 had 49.48% Klason lignin loss which was greater than 40.58% shown by Trametes versicolor that it is known as a typical lignin degrading fungus. Also, the biodegradation process and morphological features of degraded pine wood by selected fungi were observed with the scanning electron microscope. At the stage of 20 days incubation, mycelia invasion was observed without any failure of wood structure. At 60 days, wood decay was gone in some degree and one part of tracheid and ray wall was destroyed. At 100 days, tracheid wall was severely destroyed, and distinction between ray cell was difficult as cell wall was decayed much.

Oxalic Acid Metabolism and Decay Characteristics of Tyromyces palustris (갈색부후균 Tyromyces palustris의 수산대사와 목질분해 특성)

  • Son, Dong-Weon;Lee, Dong-Heub;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.54-59
    • /
    • 1995
  • This experiment was carried out to evaluate the role of oxalic acid metabolism in the incipient decay of brown rotting, and to investigate the effects of various compositions of culture medium. Until 5days incubation, the amount of oxalic acid produced by Tyromyces palustris was increased, while pH was gradually decreased. The difference in oxalic acid production depending on carbon sources was not significant and the pH adjustment of media did not stimulate the production of oxalic acid. In this experiment, hemicellulose was hydrolyzed with 1% oxalic acid, so it is suggested that nonenzymatic acid hydrolysis of hemicelluloses might be involved in the process of incipient decay of brown-rot fungi.

  • PDF

Micromorphological and Chemical Characteristics of Cengal (Neobalanocarpus heimii) Heartwood Decayed by Soft Rot Fungi

  • Kim, Yoon Soo;Singh, Adya P.;Wong, Andrew H.H.;Eom, Tae-Jin;Lee, Kwang Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.68-77
    • /
    • 2006
  • The heartwood of cengal (Neobalanocarpus heimii) is known to have a high degree of decay resistance by virtue of its high extractive content. After 30 years in ground contact an utility pole of this tropical hardwood was found to be degraded only in the surface layers by cavity-forming soft rot fungi. The present work was undertaken 1) to characterize the degradation of cengal heartwood from the aspect of ultrastructure and chemistry and 2) to investigate the correlation between soft rot decay and its extractive microdistribution in wood tissues. The chemical analysis of cengal heartwood revealed the presence of a high amount of extractives as well as lignin. The wood contained a relatively high amount of condensed lignin and the guaiacyl units. Microscopic observations revealed that vessels, fibers and parenchyma cells (both ray and axial parenchyma) all contained extractives in their lumina, but in variable amounts. The lumina of fibers and most axial parenchyma were completely or almost completely filled with the extractives. TEM micrographs showed that cell walls were also impregnated with extractives and that pit membranes connecting parenchyma cells were well coated and impregnated with extractives. However, fungal hyphae were present in the extractive masses localized in cell lumina, and indications were that the extractives did not completely inhibit fungal growth. The extent of cell wall degradation varied with tissue types. The fibers appeared to be more susceptible to decay than vessels and parenchyma. Middle lamella was the only cell wall region which remained intact in all cell types which were severely degraded. The microscopic observations suggested a close correlation between extractive microdistribution and the pattern and extent of cell wall degradation. In addition to the toxicity to fungi, the physical constraint of the extractive material present in cengal heartwood cells is likely to have a profound effect on the growth and path of invasion of colonizing fungi, thus conferring protection to wood by restricting fungal entry into cell walls. The presence of relatively high amount of condensed lignin is also likely to be a factor in the resistance of cengal heartwood to soft rot decay.

Variation of Soil Mycoflora in Decomposition of Rice Stubble from Rice-wheat Cropping System

  • Vibha, Vibha;Sinha, Asha
    • Mycobiology
    • /
    • v.35 no.4
    • /
    • pp.191-195
    • /
    • 2007
  • The colonization pattern and extent of decay produced in paddy stubble by soil inhabiting mycoflora were done by using nylon net bag technique. Among the three methods used for isolation of fungi, dilution plate technique recorded the highest number of fungi followed by damp chamber and direct observation method. Nutrient availability and climatic conditions (temperature, humidity and rainfall) influenced the occurrence and colonization pattern of fungi. Maximum fungal population was recorded in October ($48.99{\times}10^4/g$ dry litter) and minimum in May ($11.41{\times}10^4/g$ dry litter). Distribution of Deuteromycetous fungi was more in comparison to Zygomycetes, oomycetes and ascomycetes. In the early stage of decomposition Mucor racemosus, Rhizopus nigricans, Chaetomium globosum and Gliocladium species were found primarly whereas at later stages of decomposition preponderance of Aspergillus candidus, Torula graminis, Cladosporiun cladosporioides and Aspergillus luchuensis was recorded.

Effect of Brown-rotted Wood on Mechanical Properties and Ultrasonic Velocity

  • Lee, Sang-Joon;Kim, Gyu-Hyeok;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.24-32
    • /
    • 2008
  • Artificial brown-rot decay was induced to two wood species, Pinus densiflora and Pinus radiata. A modified direct inoculation method was used and the decay indicators of mass loss and two compressive mechanical properties, maximum compressive strength (MCS) and compressive stiffness, were estimated over the period of 8 weeks of fungal exposure. Measurable mass loss occurred 2 weeks after the fungal attack, with 15% to 22% of the loss occurring 8 weeks after fungal exposure with Fornitopsis palustris and Gloeophyllurn trabeurn. Mechanical properties proved to be far more sensitive than mass loss detection: approximately five to six times by quantity. Of the two mechanical properties, MCS was more sensitive to and consistent with progressive brown-rot decay. An ultrasonic test was performed to determine the feasibility and accuracy of this method for nondestructive detection of brown-rot decay. The ultrasonic test is highly sensitive at qualitative detection of the early stages of brown-rot decay.

Screening of White Rot Fungi with Selective Delignification Capacity for Biopulping (백색목재부후균중 Biopulping에 이용가능한 선택적 리그닌분해균의 스크리닝)

  • Lee, Jong-Kyu;Oh, Eun-Sung
    • The Korean Journal of Mycology
    • /
    • v.26 no.2 s.85
    • /
    • pp.144-152
    • /
    • 1998
  • To obtain white rot fungi which have selective delignification capacity and can be used in biopulping processes, 94 different wood rotting fungi were screened and the capabilities of selected species were evaluated on deciduous and coniferous wood blocks. White rot fungi, first of all, were selected by simple enzyme tests, i.e., cellulase activity test; phenol oxidase activity test; laccase and peroxidase activity test. Most organisms that gave a positive Bavendamm gave a strongly positive laccase test with syringaldazine whereas most of those that gave a negative Bavendamm test also negative test for laccase and peroxidase, even if some exceptions were noted. Wood decay experiement were carried out to select fungal species with selective lignin-degrading ability by inoculating selected fungi to both wood blocks of Populus tomentiglandulosa and Larix leptolepis. After 12 weeks of incubation, weight losses, lignin losses, and morphological characteristics of the decayed wood were investigated. Almost all fungi tested caused 2 or more times of weight losses in P. tomentiglandulosa than in L. leptolepis, while no weight losses were detected from the un-inoculated wood blocks. Ceriporiopsis subvermispora and Phanerochaete chrysosporium were the best delignifiers for both hardwood and softwood. P. chrysosporium, however, was less effective than C. subvermispora. Bjerkandera adusta and two unidentified spp. caused delignification for only P. tomentiglandulosa. B. adusta caused simultaneous rot of all cell wall components, resulted in thinning of the secondary cell wall layers. Other fungi caused selective delignification resulting in the removal of lignin from middle lamella and separation of cells from each other.

  • PDF

Checklist of Hymenomycetes (Aphyllophorales s.l.) and Heterobasidiomycetes in Israel

  • Tura, Daniel;Zmitrovich, Ivan V.;Wasser, Solomon P.;Nevo, Eviatar
    • Mycobiology
    • /
    • v.38 no.4
    • /
    • pp.256-273
    • /
    • 2010
  • A checklist is presented concerning the species composition of Hymenomycetes (Aphyllophorales s.l.) and Heterobasidiomycetes in Israel based on data of previous studies and field sample collections. In total, 242 species are presented, of which five are new records for the Israeli mycobiota, namely Australohydnum dregeanum, Ceriporiopsis consobrina, C. resinascens, Fibroporia vaillantii, and Postia inocybe. The distribution and habitat of each species in Israel are also summarized. This checklist will serve as valuable data for future species diversity studies of these fungi in Israel.

Distribution and Preservative Effectiveness of Resin Element in Pine Wood Impregnated with Monoethylene Glycol Resin Solution (Monoethylene Glycol계(系) 수지액(收支液)을 주입(注入)한 소나무재(材)에 있어서 수지성분(樹脂成分)의 분포(分布)와 방부효과(防腐效果))

  • Lee, Jong-Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.77-82
    • /
    • 1995
  • With the aim to utilize pine wood(Pinus densiflora Sieb. et Zucc.) as an interior building materials, such as flooring material, monoethylene glycol(MEG) resin solution was impregnated into greenwood. Specimens of three different qualities, that is, normal wood, resinous wood and compression wood, were prepared. Distribution of resin element(phosphorus) in MEG resin solution-impregnated woods and preservative effectiveness against brown rot fungi(Tyromyces palustris and Serpula lacrymans) of these woods were investigated. The results were as follows: 1. The concentration of phosphorus into cell walls of resinous wood and compression wood was lower compared to that of normal wood. This shows that the quality of wood has an influence on the penetration of MEG resin solution into the wood. It was shown from a leaching test that MEG resin could be leached out easily from the cell walls. 2. The resinous wood and compression wood, even without MEG resin solution impregnation had high decay resistance. For normal wood, significant improvement of preservative effectiveness was observed after impregnation of MEG resin solution. It was shown that MEG resin was leached out from the woods after leaching test, resulting in the reduction of preservative effectiveness. From this result, suitability of MEG resin solution-impregnated woods as an interior materials was recognized.

  • PDF

Density, Bonding Strength, Bending strength and Decay Resistance of Radiata Pine Laminated Veneer Lumber (라디에타소나무 단판적층재의 밀도·접착·강도성능 및 내부후성)

  • Suh, Jin-Suk;Lee, Dong-Heub;Hwang, Won-Joung;Oh, Hyung-Min;Park, Young-Ran;Kang, Sung-Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.344-350
    • /
    • 2011
  • In this study, LVLs of radiata pine were fabricated with non-preservative treated veneers, CuAz treated veneers, and ACQ treated veneers, using aqueous vinyl urethane adhesive and phenol modified resorcinol resin adhesive. Then density gradient, bonding strength, bending properties and decay resistance of LVLs were evaluated. As results, the cone-shaped and higher density gradient pattern was found in layer close to glueline. After cyclic water boiled test, the LVL bonded with aqueous vinyl urethane resin adhesive was delaminated in all layers or partly delaminated including check, chasm in glueline layer. In the case of LVL bonded with phenol modified resorcinol resin adhesive, despite slight cupping due to great glueline stress and vertical check between glueline layers, it was observed that the bonding strength to delamination was higher, owing to most absence of delamination through overall glueline. On the other hand, in the decay test, mass loss by brown rot fungi was greater than white rot fungi in LVL bonded with aqueous vinyl urethane resin adhesive. However, in LVL bonded with phenol modified resorcinol resin adhesive, the mass loss by brown rot fungi was slight and non-preservative treated LVL was low. The mass loss of preservative-treated LVL was 0 (zero), showing the high decay resistance effect.