• Title/Summary/Keyword: decay estimate

Search Result 126, Processing Time 0.029 seconds

Study of Selected IPCC Methodologies for the Estimation of Greenhouse Gas Emissions from a Landfill (매립지 온실 가스 배출량 산정을 위한 IPCC 선정방법별 특성 연구)

  • Jung, Sung Hoon;Hwang, Hyeon Uk;Kim, Myung Gyun;Yan, Cao Zheng;Nzioka, Antony Mutua;Tinega, Joseph Nyamoko;Kim, Young Ju
    • Resources Recycling
    • /
    • v.25 no.5
    • /
    • pp.28-35
    • /
    • 2016
  • The purpose of this study was to estimate greenhouse gas emissions using IPCC 1996 Guideline Tier 1, Good Practice Guidance 2000 Tier 2 and IPCC 2006 Guideline First Order Decay methods from landfill disposal facility. In addition, a comparative analysis evaluating the pros and cons of each method based on assumptions and default factors was considered for each method. The greenhouse gas emission computed using IPCC 1996 Guideline Tier 1 method (2,760 ton/yr) was higher than the estimation of GPG 2000 Tier 2 and IPCC 2006 Guideline First Order Decay Model which showed 1500 and 880 ton/yr respectively between 2000 and 2013.

Imputation of Missing SST Observation Data Using Multivariate Bidirectional RNN (다변수 Bidirectional RNN을 이용한 표층수온 결측 데이터 보간)

  • Shin, YongTak;Kim, Dong-Hoon;Kim, Hyeon-Jae;Lim, Chaewook;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.4
    • /
    • pp.109-118
    • /
    • 2022
  • The data of the missing section among the vertex surface sea temperature observation data was imputed using the Bidirectional Recurrent Neural Network(BiRNN). Among artificial intelligence techniques, Recurrent Neural Networks (RNNs), which are commonly used for time series data, only estimate in the direction of time flow or in the reverse direction to the missing estimation position, so the estimation performance is poor in the long-term missing section. On the other hand, in this study, estimation performance can be improved even for long-term missing data by estimating in both directions before and after the missing section. Also, by using all available data around the observation point (sea surface temperature, temperature, wind field, atmospheric pressure, humidity), the imputation performance was further improved by estimating the imputation data from these correlations together. For performance verification, a statistical model, Multivariate Imputation by Chained Equations (MICE), a machine learning-based Random Forest model, and an RNN model using Long Short-Term Memory (LSTM) were compared. For imputation of long-term missing for 7 days, the average accuracy of the BiRNN/statistical models is 70.8%/61.2%, respectively, and the average error is 0.28 degrees/0.44 degrees, respectively, so the BiRNN model performs better than other models. By applying a temporal decay factor representing the missing pattern, it is judged that the BiRNN technique has better imputation performance than the existing method as the missing section becomes longer.

Public Exposure to Natural Radiation and the Associated Increased Risk of Lung Cancer in the Betare-Oya Gold Mining Areas, Eastern Cameroon

  • Joseph Emmanuel Ndjana Nkoulou II;Louis Ngoa Engola;Guy Blanchard Dallou;Saidou;Daniel Bongue;Masahiro Hosoda;Moise Godefroy Kwato Njock;Shinji Tokonami
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.59-67
    • /
    • 2023
  • Background: This study aims to reevaluate natural radiation exposure, following up on our previous study conducted in 2019, and to assess the associated risk of lung cancer to the public residing in the gold mining areas of Betare-Oya, east Cameroon, and its vicinity. Materials and Methods: Gamma-ray spectra collected using a 7.62 cm×7.62 cm in NaI(Tl) scintillation spectrometer during a car-borne survey, in situ measurements and laboratory measurements performed in previous studies were used to determine the outdoor absorbed dose rate in air to evaluate the annual external dose inhaled by the public. For determining internal exposure, radon gas concentrations were measured and used to estimate the inhalation dose while considering the inhalation of radon and its decay products. Results and Discussion: The mean value of the laboratory-measured outdoor gamma dose rate was 47 nGy/hr, which agrees with our previous results (44 nGy/hr) recorded through direct measurements (in situ and car-borne survey). The resulting annual external dose (0.29±0.09 mSv/yr) obtained is similar to that of the previous study (0.33±0.03 mSv/yr). The total inhalation dose resulting from radon isotopes and their decay products ranged between 1.96 and 9.63 mSv/yr with an arithmetic mean of 3.95±1.65 mSv/yr. The resulting excess lung cancer risk was estimated; it ranged from 62 to 216 excess deaths per million persons per year (MPY), 81 to 243 excess deaths per MPY, or 135 excess deaths per MPY, based on whether risk factors reported by the U.S. Environmental Protection Agency, United Nations Scientific Committee on the effects of Atomic Radiation, or International Commission on Radiological Protection were used, respectively. These values are more than double the world average values reported by the same agencies. Conclusion: There is an elevated level of risk of lung cancer from indoor radon in locations close to the Betare-Oya gold mining region in east Cameroon. Therefore, educating the public on the harmful effects of radon exposure and considering some remedial actions for protection against radon and its progenies is necessary.

Dose rate conversion factor for soil by the beta-rays and gamma-rays from 238,235U, 232Th and 40K (238,235U, 232Th과 40K의 베타선 및 감마선에 의한 토양의 흡수선량 환산 인자)

  • Kim, Gi-Dong;Eum, Chul-Hun;Bang, Jun-Hwan
    • Analytical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.460-467
    • /
    • 2007
  • Dose rate conversion factor was calculated to estimate the absorbed effective annual doses for soils for the beta-rays and gamma-rays, which were emitted from $^{238,235}U$, $^{232}Th$, and $^{40}K$ isotopes. The most recent data of the emitted energies per decay, half-lifes, and branching ratios, which were obtained from National Nuclear Data Center, were used. When this factor and the effective annual doses for the beta-rays and the gamma-rays of natural radioisotopes were compared with those of Aitken, these of $^{238}U$, $^{232}Th$ and $^{40}K$ are estimated to have good agreements but a large difference is shown in this for $^{235}U$. Through the calculations of effective annual doses by using these factor and the measurements of gamma-ray spectra for soils, which were extracted from prehistoric remains (Mansuri) on Osong, Chungchengbuk-do, The annual effective doses were obtained to be 3.8~5.9 mGy/yr. Also, when these doses including decay elements upper Rn were compared with those on all isotopes, the differences within 9~30 % were obtained. The analysis method of the annual effective doses for the beta-rays and the gamma-rays of the natural isotopes of soils was established by this dose rate conversion factor.

Comparative assessment of the effective population size and linkage disequilibrium of Karan Fries cattle revealed viable population dynamics

  • Shivam Bhardwaj;Oshin Togla;Shabahat Mumtaz;Nistha Yadav;Jigyasha Tiwari;Lal Muansangi;Satish Kumar Illa;Yaser Mushtaq Wani;Sabyasachi Mukherjee;Anupama Mukherjee
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.795-806
    • /
    • 2024
  • Objective: Karan Fries (KF), a high-producing composite cattle was developed through crossing indicine Tharparkar cows with taurine bulls (Holstein Friesian, Brown Swiss, and Jersey), to increase the milk yield across India. This composite cattle population must maintain sufficient genetic diversity for long-term development and breed improvement in the coming years. The level of linkage disequilibrium (LD) measures the influence of population genetic forces on the genomic structure and provides insights into the evolutionary history of populations, while the decay of LD is important in understanding the limits of genome-wide association studies for a population. Effective population size (Ne) which is genomically based on LD accumulated over the course of previous generations, is a valuable tool for e valuation of the genetic diversity and level of inbreeding. The present study was undertaken to understand KF population dynamics through the estimation of Ne and LD for the long-term sustainability of these breeds. Methods: The present study included 96 KF samples genotyped using Illumina HDBovine array to estimate the effective population and examine the LD pattern. The genotype data were also obtained for other crossbreds (Santa Gertrudis, Brangus, and Beefmaster) and Holstein Friesian cattle for comparison purposes. Results: The average LD between single nucleotide polymorphisms (SNPs) was r2 = 0.13 in the present study. LD decay (r2 = 0.2) was observed at 40 kb inter-marker distance, indicating a panel with 62,765 SNPs was sufficient for genomic breeding value estimation in KF cattle. The pedigree-based Ne of KF was determined to be 78, while the Ne estimates obtained using LD-based methods were 52 (SNeP) and 219 (genetic optimization for Ne estimation), respectively. Conclusion: KF cattle have an Ne exceeding the FAO's minimum recommended level of 50, which was desirable. The study also revealed significant population dynamics of KF cattle and increased our understanding of devising suitable breeding strategies for long-term sustainable development.

Analysis of Blood Flow-dependent Blood Nitric Oxide Level and Half-life of Nitric Oxide in Vivo

  • Kim Cuk-Seong;Kim Hyo-Shin;Lee Young-Jun;Park Jin Bory;Ryoo Sung-Woo;Chang Seok-Jang;Jeon Byeong-Hwa
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.2
    • /
    • pp.13-19
    • /
    • 2003
  • Endothelial release of nitric oxide (NO) contributes to the regulation of vascular tone by inducing vascular relaxation. To estimate the blood flow-dependent nitric oxide level and half-life (T1/2) of nitric oxide in vivo state, we investigated the change of aortic NO currents during the change of aortic blood flow rate using NO-selective electrode system and electromagnetic flowmeter in the aorta of anesthetized rats. Resting mean aortic blood flow rate was $49.6{\pm}5.6ml/min$ in the anesthetized rats. NO currents in the aorta were increased by the elevation of blood pressure and/or blood flow rate. When the aortic blood flow was occluded by the clamping, aortic NO currents were decreased. The difference of NO concentration between resting state and occluded state was $1.34{\pm}0.26{\mu}M$ (n=7). This NO concentration was estimated as blood flow-dependent nitric oxide concentration in the rats. Also, while the aortic blood flow was occluded, NO currents were decreased with exponential pattern with $12.84{\pm}2.15$ seconds of time constant and $7.70{\pm}1.07$ seconds of half-life. To summarize, this study suggested that blood flow-dependent NO concentration and half-life of nitric oxide were about $1.3{\mu}M$ and 7.7 seconds, respectively, in the aorta of anesthetized rats. The nitric oxide-selective electrode system is useful for the direct and continuous measurement of NO in vivo state.

  • PDF

Surface Flux Measurements of Methane from Lamdfills by Closed Chamber Technique and its Validation (플럭스챔버에 의한 매립지표면 메탄의 배출량 측정과 분석)

  • 김득수;장영기;전의찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.499-509
    • /
    • 2000
  • Next to carbon dioxide, methane is the second largest contributor to global warming among anthropogenic greenhouse gases. Methane is emitted into the atmosphere from both natural and anthropogenic sources. Natural sources include wetlands, termites, wildries, ocean and freshwater. Anthropogenic sources include landfill, natural gas and oil production, and agriculture. These manmade sources account for about 70% of total global methane emissions; and among these, landfill accounts for approximately 10% of total manmade emissions. Solid waste landfills produce methane as bacteria decompose organic wastes under anaerobic conditions. Methane accounts for approximately 45 to 50 percent of landfill gas, while carbon dioxide and small quantities of other gases comprise the remaining to 50 to 55 percent. Using the closed enclosure technique, surface emission fluxes of methane from the selected landfill sites were measured. These data were used to estimate national methane emission rate from domestic landfills. During the three different periods, flux experiments were conducted at the sites from June 30 through December 26, 1999. The chamber technique employed for these experiments was validated in situ. Samples were collected directly by on-site flux chamber and analyzed for the variation of methane concentration by gas chromatography equipped with FID. Surface emission rates of methane were found out to vary with space and time. Significant seasonal variation was observed during the experimental period. Methane emission rates were estimated to be 64.5$\pm$54.5mgCH$_4$/$m^2$/hr from Kimpo landifll site. 357.4$\pm$68.9mgCH$_4$/$m^2$/hr and 8.1$\pm$12.4mgCH$_4$/$m^2$/hr at KwanJu(managed and unmanaged), 472.7$\pm$1056mgCH$_4$/$m^2$/hr at JonJu, and 482.4$\pm$1140 mgCH$_4$/$m^2$/hr at KunSan. These measurement data were used for the extrapolation of national methane emission rate based on 1997 national solid waste data. The results were compared to those derived by theoretical first decay model suggested by IPCC guidelines.

  • PDF

Characteristics of Indoor Air Quality of Acidic Air Pollutants in a Private Home During Home During the Summer Season (여름철 가정집에서의 산성오염물질에 대한 실내 공기질 특성)

  • 이학성;강병욱;강충민;여현구
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.2
    • /
    • pp.193-201
    • /
    • 2001
  • Acidic air pollutants were collected to characterize indoor air quality in a residential area in the summer. All indoor and outdoor samples were measured simultaneously using an annular denuder system(ADS) in Seoul. The data set was collected from July 26 to September 11, 1997. The mean indoor/outdoor ratios measured from this study were : 0.34 for $HNO_3$; 0.91 for $HNO_2$; 0.22 for $SO_2$; 1.34 for $NH_3$; 0.78 for $PM_{2.5}(d_p$ <2.5 $mutextrm{m}$); 0.90 for $SO_{4}^{2-}$; 0.68 for $NO_{3}^{-}$ and 0.79 for $NH_{4}^{+}$. Indoor concentrations of $HNO_3$, $SO_2$ and $PM_{2.5}$ were highly correlated with the outdoor concentrations. The relationship between indoor and outdoor air is dependent, to a large extent, on the rate of air exchange between these two environments. A tracer-gas decay technique with sulfur hexafluoride ($SF_{6}$) as a tracer gas was used to estimate the air exchange of a private home in the summer. The average air exchange rate was estimated to be 23.7 hr(sup)-1. The deposition velocities for $SO_{4}^{2-}$, $NO_{3}^{-}$ and $NH_{4}^{+}$ calculated were 0.17, 0.69 abd 0.39 cm/sec, respectively.

  • PDF

Calibration of Activated Sludge Model No. 1 using Maximum Respiration Rate: Maximum Autotrophs Specific Growth Rate (최대 호흡율을 이용한 활성슬러지 모델 No.1 보정: 자가영양균 최대비성장율 추정)

  • Choi, E.H.;Buys, B.;Temmink, H.;Klapwijk, B.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.409-413
    • /
    • 2005
  • A method to estimate the autotrophic maximum specific growth rate is presented in this paper. First of all, the concentration of nitrifier is simulated based on the amount of N nitrified, the sludge age and the default value for the decay coefficient. Secondly the OUR of the sludge with access of ammonia is measured. The maximum specific growth rate can be calculated as ${\mu}_{max,A}\;=\;OUR_{max,A}/Y_A$. It was demonstrated that the maximum specific growth rate of autotrophic biomass is not a constants but a time variable parameter. It is concluded that using $OUR_{max,A}$ for dynamic estimating maximum specific growth rate is a good approach and that using a constant value for the maximum specific growth rate over a longer period of time could not predict the performance of activated sludge plants.

OECD/NEA BENCHMARK FOR UNCERTAINTY ANALYSIS IN MODELING (UAM) FOR LWRS - SUMMARY AND DISCUSSION OF NEUTRONICS CASES (PHASE I)

  • Bratton, Ryan N.;Avramova, M.;Ivanov, K.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.313-342
    • /
    • 2014
  • A Nuclear Energy Agency (NEA), Organization for Economic Co-operation and Development (OECD) benchmark for Uncertainty Analysis in Modeling (UAM) is defined in order to facilitate the development and validation of available uncertainty analysis and sensitivity analysis methods for best-estimate Light water Reactor (LWR) design and safety calculations. The benchmark has been named the OECD/NEA UAM-LWR benchmark, and has been divided into three phases each of which focuses on a different portion of the uncertainty propagation in LWR multi-physics and multi-scale analysis. Several different reactor cases are modeled at various phases of a reactor calculation. This paper discusses Phase I, known as the "Neutronics Phase", which is devoted mostly to the propagation of nuclear data (cross-section) uncertainty throughout steady-state stand-alone neutronics core calculations. Three reactor systems (for which design, operation and measured data are available) are rigorously studied in this benchmark: Peach Bottom Unit 2 BWR, Three Mile Island Unit 1 PWR, and VVER-1000 Kozloduy-6/Kalinin-3. Additional measured data is analyzed such as the KRITZ LEU criticality experiments and the SNEAK-7A and 7B experiments of the Karlsruhe Fast Critical Facility. Analyzed results include the top five neutron-nuclide reactions, which contribute the most to the prediction uncertainty in keff, as well as the uncertainty in key parameters of neutronics analysis such as microscopic and macroscopic cross-sections, six-group decay constants, assembly discontinuity factors, and axial and radial core power distributions. Conclusions are drawn regarding where further studies should be done to reduce uncertainties in key nuclide reaction uncertainties (i.e.: $^{238}U$ radiative capture and inelastic scattering (n, n') as well as the average number of neutrons released per fission event of $^{239}Pu$).