• Title/Summary/Keyword: debris-free process

Search Result 11, Processing Time 0.037 seconds

Development of Debris-free Process using Erasable Ink for Polymer Ablation (폴리머의 어블레이션 시 소거성 잉크를 이용한 잔유물 제거공정 개발)

  • Shin, D.S.;Lee, J.H.;Suh, J.;Kim, T.H.
    • Laser Solutions
    • /
    • v.8 no.2
    • /
    • pp.21-32
    • /
    • 2005
  • The excimer laser ablation of a polymer occurs by the excitation of chemical bonds to energy levels that are above the dissociation energy. In this process, however, fragmented debris is finally ejected explosively by the scission of bonds and accumulates on the material surface. In the present work, a process for eliminating surface debris contamination generated by the laser ablation of a polymer is developed. The proposed approach for removing surface debris utilizes an erasable ink pasted on a polymide. The ink pasted polyimide is ablated by KrF excimer laser. The surface debris ejected from the polyimide is then combined with the ink layer on the polymer. Finally, both the surface debris and the ink layer are removed using adhesive tape or alcohol solvent. The results suggest that the erasable ink method is a simple, low cost, and extremely effective debris eliminating process.

  • PDF

Effect of Ultrasonic Vibration on Micro-EDM Channel (Micro-EDM 채널가공에서 초음파 가진의 영향)

  • Lim, Heesung;Hong, Minsung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.421-425
    • /
    • 2016
  • Micro-EDM is one of the recent fine-machining technologies. Micro-EDM is widely used in precision processes because products manufactured via EDM are free from workpiece hardness. However, the debris produced during the process cause many problems such as reduced precision of the process. The first solution of this problem involves using the milling hole process. Micro-EDM hole process involves an electrode moving rapidly in the vertical direction via a servo system to disperse debris. However, this process can cause reduced work efficiency owing to contact between the electrode and workpiece. In this study, ultrasonic vibration is added to micro-EDM channel machining. Ultrasonic vibration removes the debris during machining and enables precision machining. Consequently, a clean work environment for the subsequent processes is maintained.

Study on low-k wafer engraving processes by using UV pico-second laser (Low-k 웨이퍼 레이저 인그레이빙 특성에 관한 연구)

  • Nam, Gi-Jung;Moon, Seong-Wook;Hong, Yoon-Seok;Bae, Han-Seong;Kwak, No-Heung
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.11a
    • /
    • pp.128-132
    • /
    • 2006
  • Low-k wafer engraving process has been investigated by using UV pico-second laser with high repetition rate. Wavelength and repetition rate of laser used in this study are 355nm and 80MHz, respectively. Main parameters of low-k wafer engraving processes are laser power, work speed, assist gas flow rate, and protective coating to eliminate debris. Results show that engraving qualities of low-k layer by using UV pico-second pulse width and high repetition rate had better kerf edge and higher work speed, compared to one by conventional laser with nano-second pulse width and low repetition rate in the range of kHz. Assist gas and protective coating to eliminate debris gave effects on the quality of engraving edge. Total engraving width and depth are obtained less than $20{\mu}m$ and $10{\mu}m$ at more than 500mm/sec work speed, respectively. We believe that engraving method by using UV pico-second laser with high repetition rate is useful one to give high work speed of laser material process.

  • PDF

A Study of Low-k Wafer Engraving Processes by Using Laser with Pico-second Pulse Width (자외선 피코초 레이저를 이용한 Low-k 웨이퍼 인그레이빙 특성에 관한 연구)

  • Moon, Seong-Wook;Bae, Han-Seong;Hong, Yun-Suk;Nam, Gi-Jung;Kwak, No-Heung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.11-15
    • /
    • 2007
  • Low-k wafer engraving process has been investigated by using UV pico-second laser with high repetition rate. Wavelength and repetition rate of laser used in this study are 355 nm and 80 MHz, respectively. Main parameters of low-k wafer engraving processes are laser power, work speed, assist gas flow, and protective coating to eliminate debris. Results show that engraving qualities of low-k layer by using a laser with UV pico-second pulse width and high repetition rate had better kerf edge and higher work speed, compared to one by conventional laser with nano-second pulse width and low repletion rate in the range of kHz. Assist gas and protective coating to eliminate debris gave effects on the quality of engraving edge. Total engraving width and depth are obtained less than $20\;{\mu}m$ and $10\;{\mu}m$ at more than 500 mm/sec work speed, respectively. We believe that engraving method by using UV pico-second laser with high repetition rate is useful one to give high work speed in laser material process.

  • PDF

First Results from the K-DRIFT pathfinder: A Single Curved Stellar Stream in the Nearby Galaxy NGC 5907

  • Byun, Woowon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.56.3-56.3
    • /
    • 2021
  • In a ΛCDM universe, most galaxies are believed to evolve by mergers and accretions. The debris resulting from such processes remains faint and/or diffuse structures, such as tidal streams and stellar halos. Although these structures are a good indicator of the recent mass assembly history of galaxies, they have the disadvantage of being difficult to observe due to their low surface brightness (LSB). To recover these LSB features by reducing the photometric uncertainties introduced by the optics system, we attempt to develop an optimized telescope, called a linear astigmatism free-three mirror system, that minimizes the loss and scattering of light within the telescope. With that prototype, we observe NGC 5907, known as a nearby galaxy with a fabulous loop structure(s), to inspect its performance. After a dedicated data reduction process, including flat-fielding with dark sky flat and sky subtraction, our observation reaches a 1σ surface brightness limit of μlim,r ≃ 28.3 mag arcsec-2 in 10×10 arcsec boxes. We finally identify a single tidal stream that is likely the remnant of a nearly disrupted galaxy. This finding emphasizes that the capability of LSB detection with our telescope is comparable to that of much larger telescopes.

  • PDF

A Comparative Study of Transistor and RC Pulse Generators for Micro-EDM of Tungsten Carbide

  • Jahan, Muhammad Pervej;Wong, Yoke San;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.3-10
    • /
    • 2008
  • Micro-electrical discharge machining (micro-EDM) is an effective method for machining all types of conductive materials regardless of hardness. Since micro-EDM is an electro-thermal process, the energy supplied by the pulse generator is an important factor in determining the effectiveness of the process. In this study, an investigation was conducted on the micro-EDM of tungsten carbide (WC) to compare the performance of transistor and resistance/capacitance (RC) pulse generators in obtaining the best quality micro-hole. The performance was measured by the machining time, material removal rate, relative tool wear ratio, surface quality, and dimensional accuracy. The RC generator was more suited for minimizing the pulse energy, which is a requirement for fabricating micro-parts. The smaller-sized debris formed by the low-discharge energy of RC micro-EDM could be easily flushed away from the machined zone, resulting in a surface free of burrs and resolidified molten metal. The RC generator also required much less time to obtain the same quality micro-hole in WC. Therefore, RC generators are better suited for fabricating micro-structures, producing good surface quality and better dimensional accuracy than the transistor generators, despite their higher relative tool wear ratio.

The Methodology for Investigation on Seabed Litters and The Distribution of Seabed Litters in Ports around the Korean Coastline (수중침적 폐기물 실태조사 및 국내 연안의 항 내 수중침적 폐기물 분포에 관한 연구)

  • Kang W.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.3
    • /
    • pp.74-80
    • /
    • 2001
  • Due to floating marine debris, seabed litters, dead shellfishes and polluted sediments, etc. , which are mainly caused by fishery activities in a large scale around the coastline, expansion of industrialized areas from economic development and drastic increase of free time by the improved standard of living, Korean coast is believed to be cast beyond the self purification of marine ecosystem. Seabed litters, if not remedied in a timely manner, will eventually lead to the overall disorder of benthic ecosystem. Thus, in order to prevent marine ecosystem from being thrown into confusion by seabed litters and to restore ocean environments, it is reasonable to investigate the current status of the seabed litters by carrying out an extensive examination on them and to equip ourselves for marine debris with an systemized tool that provides supports to the building process of an efficient methodology of litters disposal through managing related data appropriately. As an primary step to this goal, a systematic method of investigation is presented in this paper. With this methodology, the present state of the seabed titters is properly understood for the specified list of ports.

  • PDF

Effect of the Microstructrure of Rapidly Solidified Al-Pb-Cu-Mg on the Wear ProPerty (급속응고된 Al-Pb-Cu-Mg 합금의 마모특성에 미치는 미세조직의 영향)

  • 김홍물
    • Journal of Powder Materials
    • /
    • v.7 no.1
    • /
    • pp.12-18
    • /
    • 2000
  • Effects of the microstrucrure of rapidy solidified Al-Pb-Cu-Mg alloys on the wear investigated. In order to overcome the miscility gap between Al and pb under equilibrium conditions, both in the solid and the liquid states, the alloy were rapidy solidifies to produce them in a segregation-free condition. Although the Pb particles showed relatively fine dispersion in the Al matrix in all the alloys by this process. the Al-16Pb alloy was found to have the most favorable microstructure with discretre with discrete Pb particles of abount 0.5 ${\mu}$m in size. With the addition of Cu and Cu-Mg to Al-16Pb, cellular structures were newly formed; not seen in the binary Al-Pb alloy. Wear properties of the Al-Pb binary alloys measured as a function of the sliding speen, sliding distance, and applied load showed that the Al-16Pb alloy has the best wear resistance, as expected from the fine microstructural features in this alloy. The were resistance of the alloy containing Cu-and Cu-Mg was higher than that of the Al-16Pvb alloy, due to matrix strengthening by precipitation hardeing. The wear mechanism was identified by examining the traces and wear debris.

  • PDF

Properties of liquid crystal alignment layers exposued to ion-beam irradiation enemies (이온빔 에너지에 따른 액정배향막의 전기광학적 특성연구)

  • Oh, Byeong-Yun;Lee, Kang-Min;Park, Hong-Gyu;Kim, Byoung-Yong;Kang, Dong-Hun;Han, Jin-Woo;Kim, Young-Hwan;Han, Jeong-Min;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.430-430
    • /
    • 2007
  • In general, polyimides (PIs) are used in liquid crystal displays (LCDs) as alignment layer of liquid crystals (LCs). Up to date, the rubbing alignment technique has been widely used to align liquid crystals on the PI surface, which is suitable for mass-production of LCDs because of its simple process and high productivity. However, this method has some disadvantages. Rubbed PI surfaces include the debris left by the cloth and the generation of electrostatic charges during rubbing process. Therefore, rubbing-free techniques for LC alignment are strongly required in LCD technology. In this experiment, PI was uniformly coated on indium-tin-oxide electrode substrates to form LC alignment layers using a spin-coating method and the PI layers were subsequently imidized at 433 K for 1 h. The thickness of the PI layer was set at 50 nm. The LC alignment layer surfaces were exposed to an $Ar^+$ ion-beam under various ion-beam energies. The antiparallel cells and twisted-nematic (TN) cells for the measurement of pretile angle and electro-optical characteristics were fabricated with the cell gap of 60 and $5\;{\mu}m$, respectively. The LC cells were filled with nematic LC (NLC, MJ001929, Merck) and were assembled. The NLC alignment capability on ion-beam-treated PI was observed using photomicroscope and the pretilt angle of the NLC was measured by the crystal-rotation method at room temperature. Voltage-transmittance (V-T) and response time characteristics of the ion-beam irradiated TN cell were measured by a LCD evaluation system.

  • PDF

Recovery of Paclitaxel from Suspension Culture Medium with Hydrophobic Resin (흡착제를 이용한 택서스속 식물세포 배양액으로부터 Paclitaxel 회수)

  • 김진현
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.366-369
    • /
    • 2000
  • The soluble paclitaxel was found in the supernatant of the plant cell cultures of Taxus chinensis, The percentage of soluble paclitaxel depends on paclitaxel concentration in bioreactor. As paclitaxel concentration decreases the percentage of soulbe paclitaxel increases. it is therefore important to develop a new process for the recovery of soluble paclitaxel. The use of hydrophobic resin HP20 gives nearly perfect recovery of paclitaxel in supernatant. The resin was more effective in treatment of th cell and debris free filtrate probably because of the reduced solids content In this case 3 g.l resin and 1 day reaction were enough for recovery the soluble paclitaxel in medium.

  • PDF