• Title/Summary/Keyword: debris-flow

Search Result 439, Processing Time 0.025 seconds

Analysis of Debris Flow Type in Gangwon Province by Database Construction (DB구축을 통한 강원지역 토석류 유형 분석)

  • Jun, Kyoung-Jea;Kim, Gi-hong;Yune, Chan-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.171-179
    • /
    • 2013
  • In recent years in Korea, Typhoon Rusa (2002), Typhoon Maemi (2003), and the localized extreme rainfall followed by Typhoon Ewiniar in 2006 devastated residential areas, roads, and agricultural lands in Gangwon province where 90% of the area is in mountainous regions. Most of the economic losses and casualties were concentrated in the area near the mountain valleys and creeks due to the floods and debris flows. In this study, DATABASE, which includes a total 180 debris flow events in the Gangwon area, was created by collecting the hazard records and field investigations of existing debris flow sites. Analysis results showed that the most of the debris flows in Gangwon province initiated from the small slope failure with relatively steep slope of $18.1^{\circ}$. And they flowed short distances about 420 m in gentle slope with the average angle of $18.1^{\circ}$. In addition, rainfall condition was important for the triggering of debris flow not only at the day of debris flow but also extended period of rainfall before debris flow.

The Estimation of Debris Flow Behaviors in Injae Landslide Area (인제군 산사태 지역의 토석류 거동 예측기법 적용)

  • Kim, Gi-Hong;Hwang, Jae-Seon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.535-541
    • /
    • 2011
  • A debris flow is caused by torrential rain in mountainous regions and carries mixture of fragmental matter from slope failure, deposit soils from a valley floor and a large amount of water. It seriously damages facilities, houses, and human lives in its path. We tried to apply debris flow behavior estimation model developed in foreign country to domestic case. The study area is Inje-county, Gangwon-do and aerial photos and GPS surveying were used to collect information of starting and end point of the landslide and debris flow. The analysis showed that L/H for forecasting the travel distances of debris flows has the mean of 4.93 and standard deviation of 0.98. This model tended to overestimate the scale and extent of debris flows. In Inje-county's case, a debris flow is caused by multiple simultaneous small-scale landslide. This is quite different from the foreign cases in which a large-scale landslide cause a large-scale debris flow. Thus, an empirical model suitable for domestic conditions needs to be developed.

Characteristics of Basin Topography and Rainfall Triggering Debris Flow (토석류 발생 지형과 유발 강우 특성 분석)

  • Kim, Kyung-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5C
    • /
    • pp.263-271
    • /
    • 2008
  • Investigation and analysis of the debris flow characteristics such as basin topography, geologic conditions of initiation location and triggering rainfall are required to systematically mitigate debris flow hazard. In this paper, 48 debris flows which had caused some damages to the highway in the past 5 years are investigated and their characteristics of basic topography and triggering rainfall are analyzed. Debris flows are found to occur in small basins having the area of $0.01{\sim}0.65km^2$ range and mostly initiated by the surficial failure of natural slope having the inclination of 29~55 degree during the intense rainfall. As for the triggering rainfall, rainfall of 2 to 5 year recurrence frequency are found to be able to trigger the debris flow and magnitude of debris flow in a basin could depend on the rainfall intensity and cumulative amount.

A Study on Characteristics of Landslides of Debris Flow in Gangwon-do (강원도 토석류 산사태의 특성에 관한 연구)

  • Yoo, Nam-Jae;Jun, Sang-Hyun;Park, Nam-Sun
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.3-10
    • /
    • 2008
  • This paper is to investigate the characteristics of debris flow landslides in Gangwon Province through literature review, data collection and analyses and site investigation. As results of data analyses about landslides occurred currently in this province, the landslide in the form of debris flow is found to be 55 %. Therefore major loss and costs are caused by discharge of soil and rock fragments from landslide. From results of analyzing the geometrical characteristics of landslide, length of most of landslide is less than 200 m, their width is in the range of 10 - 40 m, most of them are know to be occurred in lower elevation than 400 m. Slope angle is in the range of 25 - 35 degrees. Comparing the period of rainfall intensity with the time of landslide being occurred, occurrence of landslide is quite related to duration of a heavy rainfall. For measures of controlling water flow discharge and debris flow, considering geological and topographical ground conditions, appropriate selection and building check dam, erosion control dam and ring net is very beneficial for reducing the loss and costs caused by the landslide of debris flow.

  • PDF

The Study for Enhancing Resilience to Debris Flow at the Vulnerable Areas (토석류 재해발생 시 레질리언스 강화를 위한 연구)

  • Kim, Sungduk;Lee, Hojin;Chang, Hyungjoon;Dho, Hyonseung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.8
    • /
    • pp.5-12
    • /
    • 2021
  • Climate change caused by global warming increases the frequency of occurrence of super typhoons and causes various types of sediment disasters such as debris flows in the mountainous area. This study is to evaluate the behavior of debris flow according to the multiplier value of the precipitation characteristics and the quantity of debris flow according to the typhoon category. For the analysis of the debris flow, the finite difference method for time elapse was applied. The larger the typhoon category, the higher the peak value of the flow discharge of debris flow and the faster the arrival time. When the precipitation characteristic multiplier is large, the fluctuation amplitude is high and the bandwidth is wide. When the slope angle was steeper, water discharge increased by 2~2.5 times or more, and the fluctuation of the flow discharge of debris flow increased. All of the velocities of debris flow were included to the class of "Very rapid", and the distribution of the erosion or sedimentation velocity of debris flows showed that the magnitude of erosion increased from the beginning, large-scale erosion occurred, and flowed downstream. The results of this study will provide information for predicting debris flow disasters, structural countermeasures and establishing countermeasures for reinforcing resilience in vulnerable areas.

FEM Numerical Formulation for Debris Flow (토석류 유동해석을 위한 유한요소 수식화)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.55-65
    • /
    • 2014
  • Recent researches on debris flow is focused on understanding its movement mechanism and building a numerical simulator to predict its behavior. However, previous simulators emulating fluid-like debris flow have limitations in numerical stability, geometric modeling and application of various boundary conditions. In this study, depth integration is applied to continuity equation and force equilibrium for debris flow. Thickness of sediment, and average velocities in x and y flow direction are chosen for main variables in the analysis, which improve numerical stability in the area with zero thickness. Petrov-Galerkin formulation uses a discontinuous test function of the weighted matrix from DG scheme. Presented mechanical constitutive model combines fluid and granular behaviors for debris flow. Effects on slope angle, inducing debris height, and bottom friction resistance are investigated for a simple slope. Numerical results also show the effect of embankment at the bottom of the slope. Developed numerical simulator can assess various risk factors for the expected area of debris flow, and facilitate embankment design in order to minimize damage.

3D numerical modeling of impact wave induced by landslide using a multiphase flow model (다상흐름 모형을 이용한 산사태 유발 수면충격파 3차원 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.943-953
    • /
    • 2021
  • The propagation of impact wave induced by landslide and debris flow occurred on the slope of lake, reservoir and bays is a three-dimensional natural phenomenon associated with strong interaction of debris flow and water flow in complex geometrical environments. We carried out 3D numerical modeling of such impact wave in a bay using a multiphase turbulence flow model and a rheology model for non-Newtonian debris flow. Numerical results are compared with previous experimental result to evaluate the performance of present numerical approach. The results underscore that the reasonable predictions of both thickness and speed of debris flow head penetrating below the water surface are crucial to accurately reproduce the maximum peak height and free surface profiles of impact wave. Two predictions computed using different initial debris flow thicknesses become different from the instant when the peaks of impact waves fall due to the gravity. Numerical modeling using relatively thick initial debris flow thickness appears to well reproduce the water surface profile of impact wave propagating across the bay as well as wave run-up on the opposite slope. The results show that the maximum run-up height on the opposite slope is not sensitive to the initial thickness of debris flows of same total volume. Meanwhile, appropriate rheology model for debris flow consisting of inviscid particle only should be employed to more accurately reproduce the debris flow propagating along the channel bottom.

Development of a GIS-based Computer Program to Design Countermeasures against Debris Flows (GIS기반 토석류 산사태 대응공법 설계 프로그램 개발)

  • Song, Young-Suk;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.57-65
    • /
    • 2013
  • We developed a computer program (CDFlow v. 1.0) to design countermeasures against debris flows in natural terrain. The program can predict the probability of landslides occurring in natural terrain and can estimate the zone of damage caused by a debris flow. It can also be used to design the location and size of countermeasures against the debris flow. The program is run using the ArcGIS Engine, which is one of the most well-known Geographic Information System (GIS) tools for developers. The quasi-dynamic wetness index and the infinite slope stability equation were applied to predict landslide probability as a type of slope safety factor. The calculated safety factor was compared with the required safety factor, and areas of high probable potential for landslides were then selected and represented on the digital map. The volume of debris flow was estimated using these areas of high probable potential for landslides and soil depth. The accumulated volume of debris flow can be calculated along the flow channel. To assess the accuracy of the program, it was applied to a real landslide site at Deoksan-ri, Inje-gun, Kangwon-Province, where four debris barriers have been installed in the watershed of the site. The results of soil tests and a field survey indicate that the program has great potential for estimating probable landslide areas and the trajectory of debris flows. Calculation of the capacity volume of existing debris barriers revealed that they had insufficient capacity to store the calculated amount of debris flow. Therefore, this program enables a rational estimation of the optimal location and size of debris barriers.

Comparative Analysis on Methods for Evaluating Vulnerability of Debris Flow Hazard (토석류 재해 위험성 평가 방법의 비교 분석)

  • Joe, Jeong-Ha;Hwang, Hui-Seok;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.36
    • /
    • pp.49-55
    • /
    • 2016
  • Different criteria for evaluating vulnerability of debris flow hazard proposed by various institutes such as Korea Forest Service(KFS), Korea Institute of Geoscience and Mineral Resources(KIGAM), Ministry of Public Safety and Security (MPSS) and Korea Expressway Corporation (KEC) were reviewed and discussed. Assessment of debris flow hazard for natural slopes around land for house development was carried out on the basis of the report about results of performing in-situ survey. Results of evaluating vulnerability of debris flow hazard by using these methods were compared to each other to discuss appropriateness of their evaluation and to recommend improvement.

  • PDF

Analysis of Debris Flow Characteristics Considering Forest Environmental Factors -Focusing on the Case of Mt. Daeryong in 2013- (산림환경인자를 고려한 토석류 발생특성 분석 -2013년 춘천시 대룡산 사례를 중심으로-)

  • Park, Sae-Am;Yu, Gwang-Hyeon;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.35
    • /
    • pp.73-80
    • /
    • 2015
  • This paper is research results of the case study on analyzing the characteristics of debris flow considering forest environmental factors, focusing on occurrence of landslides around Mt. Daeryoung in 2013. Extensive landslide of debris flow, caused by heavy rainfall, occurred around Mt. Daeryoung during July in 2013. Field investigation was carried out to construct the data base about forest environmental factor including topography, soil formations and forest type. Thus, contributing factors to cause the landslide of debris flow were investigated so that damages from landslides could be reduced by establishing proper measures.

  • PDF