Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.33
no.6
/
pp.507-516
/
2015
Debris flow is a representative natural disaster in Korea and occurs frequently every year. Recently, it has caused considerable damage to property and considerable loss of life in both mountainous and urban regions. Therefore, It is necessary to estimate the scope of damage for a large area in order to predict the debris flow. A response model such as the random walk model(RWM) can be used as a useful tool instead of a physics-based numerical model. RWM is a probability model that simplifies both debris flows and sedimentation characteristics as a factor of slopes for a subjective site and represents a relatively simple calculation method compared to other debris flow behavior calculation models. Although RWM can be used to analyzing and predicting the scope of damage caused by a debris flow, input variables for terrain conditions are yet to be determined. In this study, optimal input variables were estimated using DEM generated from the Aerial Photograph and LiDAR data of Mt. Umyeon, Seoul, where a large-scale debris flow occurred in 2011. Further, the deposition volume resulting from the debris flow was predicted using the input variables for a specific area in which the deposition volume could not be calculated because of work restoration and the passage of time even though a debris flow occurred there. The accuracy of the model was verified by comparing the result of predicting the deposition volume in the debris flow with the result obtained from a debris flow behavior analysis model, Debris 2D.
With the increase in frequency of typhoons and heavy rains following the climate change, the scale of damage from the calamities in the mountainous areas has been growing larger and larger, which is different from the past. For the case of Korea where 64% of land is consisted of the mountainous areas, establishment of the check dams has been drastically increased after 2000 in order to reduce the damages from the debris flow. However, due to the lack of data on scale, location and kind of check dams established for reducing the damages in debris flow, the measures to prevent damages based on experience and subjective basis have to be relied on. Under this study, the high-precision DEM data was structured by using the terrestrial LiDAR in the Jecheon area where the debris flow damage occurred in July 2009. And, from the numerical models of the debris flow, Kanako-2D that is available to reflect the erosion and deposition action was applied to install the erosion control facilities (water channel, check dam) and analyzed the effect of reducing the debris flow shown in the downstream.After installing the erosion control facilities, most of debris flow moves along the water channel to reduce the area to expand the debris flow, and after installing the check dam, the flow depth and flux of the debris flow were reduced along with the erosion. However, as a result of analyzing the diffusion area, flow depth, erosion and deposition volume of the debris flow generated from the deposition part after modifying the location of the check dams with the damages occurring on private residences and agricultural land located on the upstream area, the highest reduction effect was shown when the check dam is installed in the maximal discharge points.
Journal of the Korea Society of Computer and Information
/
v.17
no.11
/
pp.11-18
/
2012
Debris flow deposition model is a model to predict affected areas by debris flow and random walk model (RWM) was used to build the model. Although the model was proved to be effective in the prediction of affected areas, the model has several free parameters decided experimentally. There are several well-known methods to estimate parameters, however, they cannot be applied directly to the debris flow problem due to the small size of training data. In this paper, a modified neural network, called pseudo sample neural network (PSNN), was proposed to overcome the sample size problem. In the training phase, PSNN uses pseudo samples, which are generated using the existing samples. The pseudo samples smooth the solution space and reduce the probability of falling into a local optimum. As a result, PSNN can estimate parameter more robustly than traditional neural networks do. All of these can be proved through the experiments using artificial and real data sets.
KSCE Journal of Civil and Environmental Engineering Research
/
v.33
no.3
/
pp.965-974
/
2013
Multiple debris flows occurred on July 27, 2012 in Mt. Umyeon, which resulted in 16 casualties and severe property demage. Accurate reproducing of the propagation and deposition of debris flow is essential for mitigating these disasters. Through applying FLO-2D model to these debris flows and comparing the results with field observations, we seek to evaluate the performance of the model and to analyse the rheological model parameters. Representative yield stress and dynamic viscosity back-calculated for the debris flows in the northern side of Mt. Umyeon are 1022 Pa and 652 $Pa{\cdot}s$, respectively. Numerical results obtained using these parameters reveal that deposition areas of debris flows in Raemian and Shindong-A regions are well reproduced in 63-85% agreement with the field observations. However, the propagation velocities of the flows are significantly underestimated, which is attributable to the inherent limitations of the model that can't take the entrainment of bed material and surface water into account. The debris flow deposition computed in Hyeongchon region where the entrainment is not significant appears to be in very good agreement with the field observation. The sensitivity study of the numerical results on model parameters shows that both sediment volume concentration and roughness coefficient significantly affect the flow thickness and velocity, which underscores the importance of careful selection of these model parameters in FLO-2D modeling.
The purpose of this paper is estimating of the amount of debris flow in hazard area using terrestrial LiDAR surveying data. Jecheon area was selected for this study. Then, the surveyed LiDAR information of DEM and 1:5000 digital map of DEM have been compared with each other and the amount of debris flow has been estimated. The result of this study was shown that the amount of erosion was $24,150m^3$ and deposition was $14,296m^3$. Well shape of channelized debris flow, hillslope debris and deposition at the bending reach of a channel can be found in the area. This study on estimation of the amount of debris flow was expected to provide more informations for debris flow of disaster mitigation and simulation work.
Journal of the Korean Association of Geographic Information Studies
/
v.13
no.2
/
pp.54-63
/
2010
The intensive rainfall over 455 mm occurred between on 9 to 14 July 2009 triggered debris flows around the mountain area in Jecheon County. We mapped the debris flow area and estimated the debris flow volume using a high resolution digital elevation model (DEM) generated respectively from terrestrial LiDAR (Light Detection And Ranging) and topographic maps. For the LiDAR measurement, the terrestrial laser scanning system RIEGL LMS-Z390i which is equipped with GPS system and high-resolution digital camera were used. After the clipping and filtering, the point data generated by LiDAR scanning were overlapped with digital map and produced DEM after debris flow. The comparison between digital map and LiDAR scanning result showed the erosion and deposition volumes of about $17,586m^3$ and $7,520m^3$, respectively. The LiDAR data allowed comprehensive investigation of the morphological features present along the sliding surface and in the deposit areas.
Proceedings of the Korean Society of Computer Information Conference
/
2012.07a
/
pp.33-34
/
2012
토석류 퇴적 모델은 토석류에 의한 피해지 예측을 위해 그 효용성이 입증된 모델이지만 이를 이용하기 위해서는 몇 가지 파라미터를 필요로 한다. 파라미터를 자동으로 추정하기 위한 방법은 여러 가지가 있지만 토석류에 의한 피해지 예측을 위한 데이터는 충분히 양을 확보하기가 어려우므로 기존의 학습 기법을 적용하는데 어려움이 있다. 본 논문에서는 인공 신경망을 학습시키는 과정에서 기존 샘플로부터 의사 샘플을 생성하고 이를 학습에 사용함으로써 보다 안정적인 학습이 가능한 의사 샘플 신경망을 제안하였다. 제안한 의사 샘플 신경망은 해공간을 평탄화시킴으로써 잘못된 국부 최적해에 빠질 확률을 줄여주고 따라서 보다 안정적인 파라미터 추정이 가능하다는 사실을 실험을 통해 확인할 수 있다.
Journal of Korean Society of Disaster and Security
/
v.15
no.4
/
pp.71-78
/
2022
Recently, mountain disasters such as landslides and debris flows have flowed along mountain streams and hit residential areas and roads, increasing damage. In this study, in order to reduce damage and analyze causes of mountain disasters, field surveys and Terrestrial LiDAR terrain analysis were conducted targeting debris flow areas, and debris flow flow processes were simulated using FLO-2D and RAMM models, which are numerical models of debris flows. In addition, the debris flow deposition area was calculated and compared and analyzed with the actual occurrence section. The sedimentation area of the debris flow generation section of the LiDAR scan data was estimated to be approximately 21,336 ㎡, and was analyzed to be 20,425 ㎡ in the FLO-2D simulation and 19,275 ㎡ in the case of the RAMMS model. The constructed topographical data can be used as basic data to secure the safety of disaster risk areas.
KSCE Journal of Civil and Environmental Engineering Research
/
v.31
no.5B
/
pp.467-474
/
2011
Debris flow is one of the most hazardous natural processes in mountainous regions. The degradation of discharge capacity of drainage facilities due to debris flows may result in damages of properties and casualty as well as road. Understanding and accurate reproducing flow behaviour of debris flows at various conditions, such as sediment volume concentration and approaching channel and culvert slopes, are prerequisite to develop advanced design criteria for drainage facilities to prevent such damages. We carried out a series of laboratory experiments of debris flows in a rectangular channel of constant width with an abrupt change of bottom slope. The experimental flume consists of an approaching channel part with the bed slope ranging $15^{\circ}$ to $30^{\circ}$ and the test channel with slope ranging from $0^{\circ}$ to $12^{\circ}$ which mimics a typical drainage culvert. The experiments have been conducted for 22 test cases with various flow conditions of channel slopes and sediment volume concentration of debris flows to investigate those effects on the behaviour of debris flows. The results show that, according to sediment volume concentration, the depth of debris flow is approximately 50% to 150% larger than that of fresh water flow at the same flow rate. Experimental results quantitatively present that flow behaviour and deposit history of debris flows in the culvert depend on the slopes of the approaching and drainage channels and sediment volume concentration. Based on the experimental results, furthermore, a logistic model is developed to find the optimized culvert slope which prevents the debris flow from depositing in the culvert.
This paper presents the applicability of rheological models for describing fine-laden debris flows and analyzes the flow characteristics as a function of grain size. Two types of soil samples were used: (1) clayey soils - Mediterranean Sea clays and (2) silty soils - iron ore tailings from Newfoundland, Canada. Clayey soil samples show a typical shear thinning behavior but silty soil samples exhibit the transition from shear thinning to the Bingham fluid as shear rate is increased. It may be due to the fact that the determination of yield stress and plastic viscosity is strongly dependent upon interstructrual interaction and strength evolution between soil particles. So grain size effect produces different flow curves. For modeling debris flows that are mainly composed of fine-grained sediments (<0.075 mm), we need the yield stress and plastic viscosity to mimic the flow patterns like shape of deposition, thickness, length of debris flow, and so on. These values correlate with the liquidity index. Thus one can estimate the debris flow mobility if one can measure the physical properties.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.