• Title/Summary/Keyword: debris flow analysis

Search Result 195, Processing Time 0.026 seconds

The Estimation of Debris Flow Behaviors in Injae Landslide Area (인제군 산사태 지역의 토석류 거동 예측기법 적용)

  • Kim, Gi-Hong;Hwang, Jae-Seon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.535-541
    • /
    • 2011
  • A debris flow is caused by torrential rain in mountainous regions and carries mixture of fragmental matter from slope failure, deposit soils from a valley floor and a large amount of water. It seriously damages facilities, houses, and human lives in its path. We tried to apply debris flow behavior estimation model developed in foreign country to domestic case. The study area is Inje-county, Gangwon-do and aerial photos and GPS surveying were used to collect information of starting and end point of the landslide and debris flow. The analysis showed that L/H for forecasting the travel distances of debris flows has the mean of 4.93 and standard deviation of 0.98. This model tended to overestimate the scale and extent of debris flows. In Inje-county's case, a debris flow is caused by multiple simultaneous small-scale landslide. This is quite different from the foreign cases in which a large-scale landslide cause a large-scale debris flow. Thus, an empirical model suitable for domestic conditions needs to be developed.

Characteristics of Basin Topography and Rainfall Triggering Debris Flow (토석류 발생 지형과 유발 강우 특성 분석)

  • Kim, Kyung-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5C
    • /
    • pp.263-271
    • /
    • 2008
  • Investigation and analysis of the debris flow characteristics such as basin topography, geologic conditions of initiation location and triggering rainfall are required to systematically mitigate debris flow hazard. In this paper, 48 debris flows which had caused some damages to the highway in the past 5 years are investigated and their characteristics of basic topography and triggering rainfall are analyzed. Debris flows are found to occur in small basins having the area of $0.01{\sim}0.65km^2$ range and mostly initiated by the surficial failure of natural slope having the inclination of 29~55 degree during the intense rainfall. As for the triggering rainfall, rainfall of 2 to 5 year recurrence frequency are found to be able to trigger the debris flow and magnitude of debris flow in a basin could depend on the rainfall intensity and cumulative amount.

Transient heat transfer and crust evolution during debris bed melting process in the hypothetical severe accident of HPR1000

  • Chao Lv;Gen Li;Jinchen Gao;Jinshi Wang;Junjie Yan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3017-3029
    • /
    • 2023
  • In the late in-vessel phase of a nuclear reactor severe accident, the internal heat transfer and crust evolution during the debris bed melting process have important effects on the thermal load distribution along the vessel wall, and further affect the reactor pressure vessel (RPV) failure mode and the state of melt during leakage. This study coupled the phase change model and large eddy simulation to investigate the variations of the temperature, melt liquid fraction, crust and heat flux distributions during the debris bed melting process in the hypothetical severe accident of HPR1000. The results indicated that the heat flow towards the vessel wall and upper surface were similar at the beginning stage of debris melting, but the upward heat flow increased significantly as the development of the molten pool. The maximum heat flux towards the vessel wall reached 0.4 MW/m2. The thickness of lower crust decreased as the debris melting. It was much thicker at the bottom region with the azimuthal angle below 20° and decreased rapidly at the azimuthal angle around 20-50°. The maximum and minimum thicknesses were 2 and 90 mm, respectively. By contrast, the distribution of upper crust was uniform and reached stable state much earlier than the lower crust, with the thickness of about 10 mm. Moreover, the sensitivity analysis of initial condition indicated that as the decrease of time interval from reactor scram to debris bed dried-out, the maximum debris temperature and melt fraction became larger, the lower crust thickness became thinner, but the upper crust had no significant change. The sensitivity analysis of in-vessel retention (IVR) strategies indicated that the passive and active external reactor vessel cooling (ERVC) had little effect on the internal heat transfer and crust evolution. In the case not considering the internal reactor vessel cooling (IRVC), the upper crust was not obvious.

FEM Numerical Formulation for Debris Flow (토석류 유동해석을 위한 유한요소 수식화)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.55-65
    • /
    • 2014
  • Recent researches on debris flow is focused on understanding its movement mechanism and building a numerical simulator to predict its behavior. However, previous simulators emulating fluid-like debris flow have limitations in numerical stability, geometric modeling and application of various boundary conditions. In this study, depth integration is applied to continuity equation and force equilibrium for debris flow. Thickness of sediment, and average velocities in x and y flow direction are chosen for main variables in the analysis, which improve numerical stability in the area with zero thickness. Petrov-Galerkin formulation uses a discontinuous test function of the weighted matrix from DG scheme. Presented mechanical constitutive model combines fluid and granular behaviors for debris flow. Effects on slope angle, inducing debris height, and bottom friction resistance are investigated for a simple slope. Numerical results also show the effect of embankment at the bottom of the slope. Developed numerical simulator can assess various risk factors for the expected area of debris flow, and facilitate embankment design in order to minimize damage.

A Statistical Mobilization Criterion for Debris-flow (통계 분석을 통한 산사태 토석류 전이규준 모델)

  • Yoon, Seok;Lee, Seung-Rae;Kang, Sin-Hang;Park, Do-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.59-69
    • /
    • 2015
  • Recently, landslide and debris-flow disasters caused by severe rain storms have frequently occurred. Many researches related to landslide susceptibility analysis and debris-flow hazard analysis have been conducted, but there are not many researches related to mobilization analysis for landslides transforming into debris-flow in slope areas. In this study, statistical analyses such as discriminant analysis and logistic regression analysis were conducted to develop a mobilization criterion using geomorphological and geological factors. Ten parameters of geomorphological and geological factors were used as independent variables, and 466 cases (228 non-mobilization cases and 238 mobilization cases) were investigated for the statistical analyses. First of all, Fisher's discriminant function was used for the mobilization criterion. It showed 91.6 percent in the accuracy of actual mobilization cases, but homogeneity condition of variance and covariance between non-mobilization and mobilization groups was not satisfied, and independent variables did not follow normal distribution, either. Second, binomial logistic analysis was conducted for the mobilization criterion. The result showed 92.3 percent in the accuracy of actual mobilization cases, and all assumptions for the logistic analysis were satisfied. Therefore, it can be concluded that the mobilization criterion for debris-flow using binomial logistic regression analysis can be effectively applied for the prediction of debris-flow hazard analysis.

Characteristics of Runout Distance of Debris Flows in Korea (한국 토석류의 이동거리 특성)

  • Choi, Dooyoung;Paik, Joongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3B
    • /
    • pp.193-201
    • /
    • 2012
  • In the last decade, heavy rainfall induced debris flow events have been remarkably occurred in Korea. Consequently, debris flow is becoming one of the most dangerous natural phenomena in mountainous area. Understanding and correct predicting of the runout distance of debris flow is an essential prerequisite for developing debris flow hazard map and prevention technology. Based on the simple and widely used sled model, in this study, we analyse the net efficiency of debris flows which is a dimensionless constant (=1/R) and defined by the ratio of the horizontal runout distance L from the debris flow source to deposit and the vertical elevation H of the source above the deposit. The analysis of field data observed in total 238 debris flow events occurred from 2002 to 2011 reveals that the representative value of the net efficiency of debris flows in Korea is 4.3. The data observed in Gangwon province where is the most debris flow-prone area in Korea shows that debris flows in Inje area have the runout distance longer than those in Pyongchang and Gangneung. Overall features of the net efficiency of debris flows observed in the central Korea are similar to those in the southern Korea. The estimation based on aerial photographs and available depositional conditions appears to overestimate the net efficiency compared to estimation based on the field observations, which indicates that appropriate depositional conditions need to be developed for debris flows in Korea.

Movements Simulation of Debris Flow for Prediction of Mountain Disasters Risk Zone (산지재해 위험구간 예측을 위한 토석류 흐름 모의)

  • Chae Yeon Oh;Kye Won Jun;Bae Dong Kang
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.71-78
    • /
    • 2022
  • Recently, mountain disasters such as landslides and debris flows have flowed along mountain streams and hit residential areas and roads, increasing damage. In this study, in order to reduce damage and analyze causes of mountain disasters, field surveys and Terrestrial LiDAR terrain analysis were conducted targeting debris flow areas, and debris flow flow processes were simulated using FLO-2D and RAMM models, which are numerical models of debris flows. In addition, the debris flow deposition area was calculated and compared and analyzed with the actual occurrence section. The sedimentation area of the debris flow generation section of the LiDAR scan data was estimated to be approximately 21,336 ㎡, and was analyzed to be 20,425 ㎡ in the FLO-2D simulation and 19,275 ㎡ in the case of the RAMMS model. The constructed topographical data can be used as basic data to secure the safety of disaster risk areas.

GIS-based Analysis of Debris-flow Characteristics in Gangwon-do (GIS를 이용한 강원지역 토석류 특성분석)

  • Ko, Suk Min;Lee, Seung Woo;Yune, Chan Young;Kim, Gi Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.1
    • /
    • pp.57-67
    • /
    • 2013
  • In Korea, there are debris-flow disasters induced by typhoon and localized torrential rainfall annually. There are particularly extensive debris-flow disasters in Gangwon-do because of its geomorphological characteristics; the extensive coverage of mountainous region, steep slope, and shallow soil. In this paper, we constructed a GIS database about topological characteristics of debris-flow basin in Gangwon-do by years of field survey. Also, we conducted frequency analysis based on this database with the digital forest type map and the digital soil map. We analyzed frequencies of debris-flow by simple count for topological characteristics, whereas we analyzed by considering an area ratio based on GIS for physiognomic and geologic characteristics. We used slope, aspect, width, depth and destruction shapes for analysis about topological characteristics of debris-flow basin. Also we used attributes of forest physiognomy, diameter, age, and density about physiognomic characteristics, and i n terms of geologic characteristics, we used attributes of drainage class, effective soil depth, subsoil properties, subsoil grave content, erosion class, parent material of soil, and topsoil properties. In consequence, we figured out topographic, forest physiognomic, and geologic characteristics of debris-flow basin. This result is applicable to establish a rational disaster prevention policy as a fundamental information.

Analysis of Debis Flow according to Change of Slope Angle (사면경사 변화에 따른 토석류의 거동 분석)

  • Park, Byung-Soo;Jun, Sang-Hyun;Yoo, Nam-Jae;Han, Kwang-Doo;Yoon, Young-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1294-1301
    • /
    • 2010
  • This study is an experimental research for the dispersion behavior and impact characteristics of debris flow according to change of slope. Large scale experimental setup for the debris flow was established to simulate the artificial rainfall and control the ground slope. Parameters such as materials of debris flow, slope, and length of slope were used for the experiments. After the experiments, it was found that the speed of ground material components was increased about 28~47%. It was found that speed can be increased by increasing the particle size. Furthermore, maximum/final loads for ground material components were increased 89% for the coarse aggregate and 68% for the fine aggregate comparing with sand.

  • PDF

Analysis of Liquefied Layer Activities Considering Erosion and Sedimentation of Debris Flow (토석류의 침식 및 퇴적을 고려한 유동층의 거동 분석)

  • Kim, Sungduk;Lee, Hojin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.4
    • /
    • pp.23-29
    • /
    • 2019
  • Heavy rainfall is in causing debris flow by recent climate change and causes much damage in the downstream. The debris flow from the mountainous area runs to the downstream, repeating sedimentation and erosion, and appears as a fluidized soil-water mixture. Continuity equation and momentum equation were applied to analyze the debris flow with strong mobility, and the sedimentation and erosion velocity with fine particle fractions were also applied. This study is to analyze the behavior of debris flow at the downstream end for the variation of the amount of sediments can occur in the upstream of the mountain. Analysis of sediment volume concentration at the downstream end of the channel due to the variance of the length of pavement of the granulated soils resulted in the higher the supply flow discharge and the longer the length of pavement, the greater the difference in the level of sediment concentration and the earlier the point of occurrence of the inflection point. The results of this study will provide good information for determining the erosion-sedimentation velocity rate which can detect erosion and sedimentation on steep slopes.