• 제목/요약/키워드: dc-link voltage unbalance

검색결과 32건 처리시간 0.023초

멀티레벨 인버터를 이용한 무효전력 보상장치에서의 DC-Link 전압 불평형 보상 (DC-Link Voltage Unbalance Compensation of Reactive Power Compensator using Multi-level Inverter)

  • 김효진;정승기
    • 전력전자학회논문지
    • /
    • 제18권5호
    • /
    • pp.422-428
    • /
    • 2013
  • Recently, we use a static synchronous compensator(STATCOM) with cascaded H-bride topologies, because it is easy to increase capacity and to reduce total harmonic distortion(THD). When we use equipment for reactive power compensation, dc-link voltage unbalances occur from several reasons although loads are balanced. In the past, switching pattern change of single phase inverter and reference voltage magnitude change of inverter equipped with power sensor have been used for dc-link voltage balance. But previous methods are more complicated and expensive because of additional component costs. Therefore, this paper explains reasons of dc-link voltage unbalance and proposes solution. This solution is complex method that is composed of reference voltage magnitude change of inverter without additional hardware and shifted phase angle of inverter reference voltages change. It proves possibility through 1000[KVA] system simulation.

2상 쵸퍼 Preregulator를 갖는 12-step 인버터에서의 DC Link단 전압 불평형 해석 (Analysis of the Unbalance of DC Link Voltage in 12-step Inverter with 2-Phase Chopper Preregulator)

  • 노의철;김인동
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.258-260
    • /
    • 1995
  • This paper deals with the voltage unbalance of DC link voltage in series connected two 6-step inverters with double chopper preregulator. Each output of the 6-step inverter is connected to each transformer. The secondary windings of one of the transformers is zig-zag connected and the other star connected. The secondary terminals of the two transformers are series connected which makes 12-step output voltage waveform. In this case, the characteristics of the two transformers are rather different each other. The difference results in the voltage unbalance of the two 6-step inverter input capacitor voltages which make the DC link voltage. The degree of the voltage unbalance is analysied with the variations of load power, load power factor and % impedance of the transformer.

  • PDF

3상 BLDC 전동기 구동을 위한 4-스위치 인버터의 DC-Link 전압 불평형 보상 (DC-Link Voltage Unbalancing Compensation of Four-Switch Inverter for Three-Phase BLDC Motor Drive)

  • 박상훈;윤용호;이병국;이수원;원충연
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.391-396
    • /
    • 2009
  • In this paper, a control algorithm for DC-Link voltage unbalancing compensation of a four-switch inverter for a three-phase BLDC motor drive is proposed. Compared with a conventional six-switch inverter, the split source of the four-switch inverter can be obtained by splitting DC-link capacitor into two capacitors to drive the three phase BLDC motor. The voltages across each of two capacitors are not always equal in steady state because of the unbalance in the impedance of the DC-link capacitors $C_1$ and $C_2$ or the variable current flowed into the capacitor's neutral point in motor control. Despite the unbalance, if the BLDC motor may be run for a long time the voltage across one of the capacitors is more increased. So the unbalance in the capacitors voltages will be accelerated. As a result, The current ripple and torque ripple is increased due to the fluctuation of input current which flows into 3-phase BLDC motor. According to that, the vibration of motor will be increased and the whole system will be instable. This paper presents a control algorithm for DC-Link voltage unbalancing compensation. The sampling from the voltages across each of two capacitors is used to perform the voltage control of DC-Link by using the feedforward controller.

전력 품질 향상을 위한 LVDC 양극성 배전 시스템의 불평형 전압 제어 (Unbalancing Voltage Control of LVDC Bipolar Distribution System for High Power Quality)

  • 이희준;신수철;강진욱;원충연
    • 전력전자학회논문지
    • /
    • 제21권6호
    • /
    • pp.486-496
    • /
    • 2016
  • The voltage unbalance of an LVDC bipolar distribution system was controlled for high power quality. Voltage unbalance may occur in a bipolar distribution system depending on the operation of the converter and load usage. Voltage unbalance can damage sensitive load and lead to converter accidents. The conditions that may cause voltage unbalance in a bipolar distribution system are as follows. First, three-level AC/DC converters in bipolar distribution systems can lead to voltage unbalance. Second, bipolar distribution systems can be at risk for voltage unbalance because of load usage. In this paper, the output DC link of a three-level AC/DC converter was analyzed for voltage unbalance, and the bipolar voltage was controlled with algorithms. In the case of additional voltage unbalance according to load usage, the bipolar voltage was controlled using the proposed converter. The proposed converter is a dual half-bridge converter, which was improved from the secondary circuit of a dual half-bridge converter. A control algorithm for bipolar voltage control without additional converters was proposed. The balancing control of the bipolar distribution system with distributed power was verified through experiments.

직렬 입력 병렬 출력 연결된 LLC 컨버터를 갖는 비엔나 정류기의 DC 링크 전압 평형 제어에 관한 연구 (A Study on the Affected of DC-Link Voltage Balance Control of the Vienna Rectifier Linked With the Input Series Output Parallel LLC Converter)

  • 백승우;김학원;조관열
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.205-213
    • /
    • 2021
  • Due to the advantage of reducing the voltage applied to the switch semiconductor, the input series and output parallel combination is widely used in systems with high input voltage and large output current. On the other hand, the LLC converter is widely used as a high-efficiency power converter, and when connected by ISOP combination, there is a possibility that input voltage imbalance may occur due to a mismatch of passive devices. To avoid damaging the switching device, this study analyzed the DC-link voltage imbalance of a high-capacity supply using an ISOP LLC converter. In addition, the case where DC-link unbalance control was applied and the case not applied was analyzed respectively. Based on this analysis, an initial start-up algorithm was proposed to prevent input power semiconductor device damage due to DC-link over-voltage. The effectiveness of the proposed algorithm has been verified through simulations and experiments.

신경회로망을 사용한 특정용도의 3-level PWM 인버터 제어방법 (The control method of 3-level PWM inverter in special application using neural networks)

  • 이현원;김남해;박귀태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1261-1264
    • /
    • 1996
  • This paper presents the design of a neural network based PWM technique for a three level inverter of electric trains. A three-level inverter has several advantages compared with a two-level inverter in this application. In viewpoint of correcting unbalance of DC-link voltage, a novel method is developed and verified in computer simulation.

  • PDF

배전용 정지형 보상기의 개선된 직류단 커패시터 전압제어 (Improved dc-link capacitor voltage control of Distribution Static Compensator)

  • 김호열;최종우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.466-467
    • /
    • 2010
  • Researches about DSTATCOM are mainly divided two parts, one is the calculation of the load-side average active power and dc-link capacitor average voltage, the other part is the current control. This paper proposes a calculation of dc-link capacitor average voltage using improved method instead of conventional method using LPF (low pass filter). Through the theoretical analysis and simulation under unbalance loads and non-linear load, the proposed method is verified.

  • PDF

맥동 전압 추출을 통한 배전용 정지형 보상기의 직류링크 전압제어 (DC-Link Voltage Control of Distribution Static Compensator using Ripple Voltage Extraction)

  • 김호열;최종우
    • 전력전자학회논문지
    • /
    • 제17권1호
    • /
    • pp.8-13
    • /
    • 2012
  • DSTATCOM is active filter that reduces nonlinear and unbalanced currents. Researches about DSTATCOM are mainly divided two parts, one is the reference value calculation of compensation current depending on the calculation of the load-side average active power and dc-link capacitor average voltage, the other part is actual current control depending on the reference value of compensation current. This paper proposes a calculation of dc-link capacitor average voltage ripple voltage extraction instead of conventional method using LPF. The utility of the proposed algorithm is verified through the theoretical analysis and the experiment under unbalance loads and non-linear load.

다단 인버터 STATCOM의 직류전압 평형 제어 (DC Voltage Balancing Control for Multilevel H-Bridge STATCOM)

  • 김경진;송승호;정승기
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 추계학술대회
    • /
    • pp.234-237
    • /
    • 2010
  • This paper proposes a balancing control of DC-link voltages of a H-bridge multilevel inverter for STATCOM application. Individual DC link voltage is controlled by simply adjusting the d-q voltage reference through a PI controller in each cell while the main controller carries out the reactive power control. The correctness and effectiveness of the method are validated by PSIM simulation with unbalanced load condition data taken from a typical arc furnace load, showing the adverse effects of load unbalance to DC link voltage significantly suppressed.

  • PDF

고조파 주입을 통한 단상 3레벨 NPC 컨버터 중성점 전압 밸런싱 연구 (A study on neutral-point voltage balance with harmonic component injection for single phase three-level NPC converter)

  • 강경필;김호성;조진태;조영훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.316-317
    • /
    • 2018
  • This paper propse the DC link capacitor voltage balancing control for three level neutral point clamped converter with harmonic component injection method. The injcetion voltage consists of harmonic component and DC link capacitor voltage difference. Theoretical analysis is provided to balance the DC link voltage, and it shows that harmonic component compensates the unbalanced condition between the capacitors. Both simulations and experiments are carried out to show that the voltage unbalance have been decreased by the proposed method.

  • PDF