• Title/Summary/Keyword: dc-ac converter

Search Result 1,024, Processing Time 0.024 seconds

New Single-Phase Power Converter Topology for Frequency Changing of AC Voltage

  • Jou, Hurng-Liahng;Wu, Jinn-Chang;Wu, Kuen-Der;Huang, Ting-Feng;Wei, Szu-Hsiang
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.694-701
    • /
    • 2018
  • This paper proposes a new single-phase power converter topology for changing the frequency of AC voltage. The proposed single-phase frequency converter (SFC) includes a T-type multi-level power converter (TMPC), a frequency decoupling transformer (FDT) and a digital signal processor (DSP). The TMPC can convert a 60 Hz AC voltage to a DC voltage and then convert the DC voltage to a 50 Hz AC voltage. Therefore, the output currents of the two T-type power switch arms have 50 Hz and 60 Hz components. The FDT is used to decouple the 50 Hz and 60 Hz components. The salient feature of the proposed SFC is that only one power electronic converter stage is used since the functions of the AC-DC and DC-AC power conversions are integrated into the TMPC. Therefore, the proposed SFC can simplify both the power circuit and the control circuit. In order to verify the functions of the proposed SFC, a hardware prototype is established. Experimental results verify that the performance of the proposed SFC is as expected.

A Simple Three-Phase Single-Stage AC/DC Converter with Magnetic Energy Feedback Technique for Power Factor Correction (역률개선 위한 자기에어지 궤환기법의 간단한 삼상 단일전력단 AC/DC 컨버터)

  • 문건우;윤석호;윤종수;이기선;추진부
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.438-443
    • /
    • 1998
  • A simple single-stage AC/DC forward converter with transformer magnetic energy feedback technique for power factor correction is proposed. The operational principle of the proposed converter is presented. The proposed converter gives the good power factor correction, low line current harmonic distortions, and tight output voltage regulation. The prototype shows high power factor with low line current harmonics.

  • PDF

A New current Controller implemented in a-b-c frame for AC-DC converter (a-b-c frame에서 구현한 AC-DCconverter 전류제어기)

  • 노의철
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.282-285
    • /
    • 2000
  • A new current controller implemented in a-b-c frame for AC-DC converter is proposed. The proposed MTPWM(Modified Trapezoidal PWM) Which is quite suitable for three phase AC-DC converter. It is known that MTPWM has good harmonics characteristics for high modulation index. It is very simple and requires no transformation in it. The results of computer simulation are shown for the validity of proosal.

  • PDF

Mitigation of Low Frequency AC Ripple in Single-Phase Photovoltaic Power Conditioning Systems

  • Lee, Sang-Hoey;An, Tae-Pung;Cha, Han-Ju
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.328-333
    • /
    • 2010
  • A photovoltaic power conditioning system (PV PCS) that contains single-phase dc/ac inverters tends to draw an ac ripple current at twice the output frequency. Such a ripple current perturbs the operating points of solar cells continuously and it may reduce the efficiency of the current based maximum power point tracking technique (CMPPT). In this paper, the ripple current generation in a dc link and boost inductor is analyzed using the ac equivalent circuit of a dc/dc boost converter. A new feed-forward ripple current compensation method to incorporate a current control loop into a dc/dc converter for ripple reduction is proposed. The proposed feed-forward compensation method is verified by simulation and experimental results. These results show a 41.8 % reduction in the peak-to peak ac ripple. In addition, the dc/ac inverter control system uses an automatic voltage regulation (AVR) function to mitigate the ac ripple voltage effect in the dc link. A 3kW PV PCS prototype has been built and its experimental results are given to verify the effectiveness of the proposed method.

Steady State and Transient Analysis of Switched Reluctance Motor Drive Fed from a Controlled AC-DC Rectifier

  • Moussa, Mona Fouad
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1495-1502
    • /
    • 2017
  • The Theory of operation of switched reluctance motors (SRM) depends on the reluctance torque, where energy is transferred to stator winding only. Although its construction is simple, the electrical design is complex, due to the switching configuration needed to deliver power to stator coils. However, because of the nonlinearly of magnetic circuit, SRM has torque ripple. This paper proposes a new strategy to drive SRM from a single-phase AC supply. Each stator winding is connected to AC-DC or AC-AC converters, which is called branch. All branches are connected in parallel to a single-phase AC supply. A shaft encoder allows current production in stator winding during the positive torque production region and terminates it during the negative torque production region. A magnetic flux is produced between stator poles when current is supplied from AC supply to stator coil and repeats many cycles as long as the rate of change of stator inductance is positive. Different possibilities for the configurations of AC-AC or AC-DC converters are introduced to drive SRM from the single-phase AC supply. A case study is presented for a SRM fed from AC supply through semi-controlled AC-DC converter is presented. A simulation model is introduced and verified by experimental rig for two-phase SRM.

A Study on Solar Cell Output Voltage Control for 3-Phase Utility Interactive Photovoltaic System (3상 계통연계형 태양광발전시스템의 태양전지 출력단 전압제어에 관한 연구)

  • Nam J. H.;Kang B. H.;Gho J. S.;Choe G. H.;Shin W. S.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.571-575
    • /
    • 2002
  • Generation of electrical energy faces many problems today. Solar power converters were used to convert the electrical energy from the solar arrays to a stable and reliable power source. The object of this paper is to analyze and design DC-DC converters in a solar energy system to investigate the performance of the converters. A DC-DC converter can be commonly used to control the power flow from solar cell to load and to achieve maximum power point tracking(MPPT), DC-AC converter can also be used to modulate the DC power to AC power being applied on common utility load. A DC-DC converter is used to boost the solar cell voltage to constant 360(V) DC link and to ensure operation at the maximum power point tracking, If a wide input voltage range has to be covered a boost converter is required. In this paper, author described that simulation and experimental results of PV system contain solar modules, a DC-DC converter(boost type chopper), a DC-AC converter (3-phase inverter) and resistive loads.

  • PDF

A Bridgeless Single Stage AC-DC Converter for Wireless Power Charging System (무선전력충전시스템을 위한 브리지리스 단일전력단 교류-직류 컨버터)

  • Kim, Min-Ji;Yoo, Sang-Jae;Yoo, Kyung-Jong;Woo, Jung-Won;Kim, Eun-Soo;Hwang, In-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.44-53
    • /
    • 2020
  • A bridgeless single-stage AC-DC converter for wireless power charging systems is proposed. This converter is composed of a PFC stage and a three-level hybrid DC-DC stage. The proposed converter can control the wide output voltage (200-450 VDC) by the variable link voltage and the pulse-width voltage applied to the primary resonant circuit due to the phase-shifted modulation at a fixed switching frequency. Moreover, the input power factor and the total harmonic distortion can be improved by using the proposed converter. A 1 kW prototype was fabricated and validated through experimental results and analysis.

Development an Structure and Control Algorithm of Propulsion Control for Driving Railway Vehicle in Both AC and DC Power Supply Section (AC 및 DC 전력공급구간 운전을 위한 도시철도용 추진제어시스템의 구조 및 제어 알고리즘 개발)

  • Lee, Chang-Hee;Lee, Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.84-91
    • /
    • 2019
  • This study proposes a AC/DC railway vehicle control algorithm that enables simultaneous driving of AC and DC power supply sections. In the Seoul metropolitan region, trolley voltage for railway vehicle is divided into AC and DC power supplies. Therefore, AC/DC railway vehicle algorithm is essential for driving on the outskirts of the region. This study analyzes resonance and beat phenomena for simultaneously running in AC and DC power supply sections, and proposes a control algorithm for railway vehicles with the application of damping and beatless controls based on this analysis. The performance of the proposed algorithm is verified by simulation and analysis of actual driving results.

A New AC/DC Converter for the Interconnections between Wind Farms and HVDC Transmission Lines

  • Nouri, Soheil;Babaei, Ebrahim;Hosseini, Seyyed Hossein
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.592-597
    • /
    • 2014
  • In this paper, a new ac/dc converter is proposed for HVDC-connected wind farms. The proposed converter provides a suitable dc voltage for HVDC transmission systems. Each wind turbine is connected to two full bridge diode rectifiers. These rectifiers are connected to each other by three thyristors. Firing the thyristors at desired angles provides an adjustable dc voltage in the output of the converter. Simulation results show the efficiency of the proposed converter.

New Control Seheme for AC-DC-AC Converters without DC Link Electrolytic Capacitor (직류링크 전해커패시터 없는 AC-DC-AC 컨버터 재어에 관한 연구)

  • 김준석;설승기
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.397-408
    • /
    • 1994
  • In this paper, a novel concept for a static three-phase to three-phase power converter for an AC drive with a unity power factor and reduced harmonics on the utility line is presented. The power circuit consists of two back-to-back connected six-pulse bridges having only a $\mu$F ceramic capacitor in the DC link. By controlling the active kpower balance between two bridges, the DC link voltage can be maintained within 20V deviation from the nominal value with the small ceramic capacitors regardless of the load variation even in the unbalanced source condition.

  • PDF