• Title/Summary/Keyword: dc/ac pwm Inverter

Search Result 142, Processing Time 0.026 seconds

고전압 Cascaded NPC H-Bridge 인버터 설계 (Design of High Voltage Cascaded NPC H-Bridge Inverter)

  • 현승욱;노용수;현병조;최준혁;김진홍
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.290-291
    • /
    • 2018
  • This paper proposed design method of DC link capasitor and leakage inductance of transformer with high voltage cascaded NPC H-bridge inverter. DC link capacitor is designed based on the ripple power between input AC power and output AC power, and leakage inductance of transformer is designed based on FFT table of unipola PWM with NPC H-bridge inverter. The proposed design method is verified by simulation results of 6.6[kV], 1.2[MW] Cascaded NPC H-bridge inverter.

  • PDF

마이크로프로세서를 이용한 하이브리드 PWM 인버터의 설계 (A design of hybrid PWM inverter using microprocessor)

  • 노창주;임재문;박중순
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.37-50
    • /
    • 1987
  • In an effort to conserve electric power, variable voltage variable frequency pulse width modulated (PWM) inverters are being applied increasingly to the variable speed control of the induction motors. The use of the PWM technique in motor drive applications is considered advantageous in many ways. For industrial applications, the PWM drive obtains its DC input through simple uncontrolled rectification of the commercial AC line and is favored for its good power factor, good efficiency, its relative freedom regulation problem, and mainly for its ability to operate the motor with nearly sinusoidal current waveforms. The purpose of this paper is to design a three phase natural sampled PWM inverter using microprocessor with simple control algorithm and hybrid control circuit has been built to implement this PWM scheme. In this system, the microprocessor can be used only for calculations directly related to motor control tasks by the design of hybrid circuit which sends PWM signals to the motor.

  • PDF

Design of the power generator system for photovoltaic modules

  • Park, Sung-Joon
    • 전기전자학회논문지
    • /
    • 제12권4호
    • /
    • pp.239-245
    • /
    • 2008
  • In this paper, a dc-dc power converter scheme with the FPGA based technology is proposed to apply for solar power system which has many features such as the good waveform, high efficiency, low switching losses, and low acoustic noises. The circuit configuration is designed by the conventional control type converter circuit using the isolated dc power supply. This new scheme can be more widely used for industrial power conversion system and many other purposes. Also, I proposed an efficient photovoltaic power interface circuit incorporated with a FPGA based DC-DC converter and a sine-pwm control method full-bridge inverter. The FPGA based DC-DC converter operates at high switching frequency to make the output current a sine wave, whereas the full-bridge inverter operates at low switching frequency which is determined by the ac frequency. As a result, we can get a 1.72% low THD in present state using linear control method. Moreover, we can use stepping control method, we can obtain the switching losses by Sp measured as 0.53W. This paper presents the design of a single-phase photovoltaic inverter model and the simulation of its performance.

  • PDF

비용절감형 컨버터 구조를 갖는 3상-3상 PWM 정류기/인버터 시스템 (Novel Converter Topology for a Three Phase to Three Phase PWM Rectifier/Inverter System)

  • 김기택;박태열;이해춘
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.323-328
    • /
    • 1998
  • A current controlled VSI-PWM rectifier and inverter with capacitor dc link is regarded as one of the most promising structures for three-phase to three-phase to three-phase power conversion. This type of converter normally requires twelve switches for a rectifier and inverter composed of self turn-off switch such as a bi-polar transistor or IGBT with an anti-parallel diode. In this paper, a new three-phase to three-phase converter for ac motor drives is proposed. The proposed converter employs only eight switches and has the capability of delivering sinusoidal input currents with unity power factor and bidirectional power flow. This paper describes the feasibility and the operational limitations of the proposed structure. A mathematical model of the system is derived using generalized modulation theory and experimental results for steady state and dynamic behavior are presented to verify the developed model.

  • PDF

불연속모드 승강압초퍼를 이용한 계통연계형 태양광발전 시스템 (Utility Interactive Photovoltaic Generation System Using Discontinuous Mode Buck-Boost Chopper)

  • 김영철;이현우;서기영
    • 전력전자학회논문지
    • /
    • 제4권4호
    • /
    • pp.325-331
    • /
    • 1999
  • 계통연계형 태양광발전시스템에서는 계통과 태양광시스템을 연계하기 위해 PWM 인버터가 이용된다. 인버터 시스템을 연속전류모드로 운전하면 맥동이 발생하게 되고, 직류전류의 맥동발생은 교류전류파형의 왜형을 가져온다. 본 연구에서는 직류입력전류의 맥동을 감소시키기 위하여 불연속모드 승강압초퍼로 인버터를 운전한다. 직류 전류에 포함된 고조파성분을 리플성분과 직류성분으로 분리하여 해석하고, 맥동이 없는 일정한 직류전류를 태양 전지로부터 인버터로 공급한다. 제안하는 인버터시스템은 단위 역률로 부하와 계통에 교류전류를 공급한다.

  • PDF

Peak-Valley Current Mode Controlled H-Bridge Inverter with Digital Slope Compensation for Cycle-by-Cycle Current Regulation

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.1989-2000
    • /
    • 2015
  • In this paper, digital peak current mode control for single phase H-bridge inverters is developed and implemented. The digital peak current mode control is achieved by directly controlling the PWM signals by cycle-by-cycle current limitation. Unlike the DC-DC converter where the output voltage always remains in the positive region, the output of DC-AC inverter flips from positive to negative region continuously. Therefore, when the inverter operates in negative region, the control should be changed to valley current mode control. Thus, a novel control logic circuit is required for the function and need to be analyzed for the hardware to track the sinusoidal reference in both regions. The problem of sub-harmonic instability which is inherent with peak current mode control is also addressed, and then proposes the digital slope compensation in constant-sloped external ramp to suppress the oscillation. For unipolar PWM switching method, an adaptive slope compensation in digital manner is also proposed. In this paper, the operating principles and design guidelines of the proposed scheme are presented, along with the performance analysis and numerical simulation. Also, a 200W inverter hardware prototype has been implemented for experimental verification of the proposed controller scheme.

Three-Phase PWM Inverter and Rectifier with Two-Switch Auxiliary Resonant DC Link Snubber-Assisted

  • Nagai Shinichiro;Sato Shinji;Matsumoto Takayuki
    • Journal of Power Electronics
    • /
    • 제5권3호
    • /
    • pp.233-239
    • /
    • 2005
  • In this paper, a new conceptual circuit configuration of a 3-phase voltage source, soft switching AC-DC-AC converter using an IGBT module, which has one ARCPL circuit and one ARDCL circuit, is presented. In actuality, the ARCPL circuit is applied in the 3-phase voltage source rectifier side, and the ARDCL circuit is in the inverter side. And more, each power semiconductor device has a novel clamp snubber circuit, which can save the power semiconductor device from voltage and current across each power device. The proposed soft switching circuits have only two active power semiconductor devices. These ARCPL and ARDCL circuits consist of fewer parts than the conventional soft switching circuit. Furthermore, the proposed 3-phase voltage source soft switching AC-DC-AC power conversion system needs no additional sensor for complete soft switching as compared with the conventional 3-phase voltage source AC-DC-AC power conversion system. In addition to this, these soft switching circuits operate only once in one sampling term. Therefore, the power conversion efficiency of the proposed AC-DC-AC converter system will get higher than a conventional soft switching converter system because of the reduced ARCPL and ARDCL circuit losses. The operation timing and terms for ARDCL and ARCPL circuits are calculated and controlled by the smoothing DC capacitor voltage and the output AC current. Using this control, the loss of the soft switching circuits are reduced owing to reduced resonant inductor current in ARCPL and ARDCL circuits as compared with the conventional controlled soft switching power conversion system. The operating performances of proposed soft switching AC-DC-AC converter treated here are evaluated on the basis of experimental results in a 50kVA setup in this paper. As a result of experiment on the 50kVA system, it was confirmed that the proposed circuit could reduce conduction noise below 10 MHz and improve the conversion efficiency from 88. 5% to 90.5%, when compared with the hard switching circuit.

태양광 발전시스템을 위한 단상 PWM 전압형 인버터 (A Single-phase PWM Voltage Source Inverter for Photovoltaic Generation System)

  • 유택빈;성낙규;강승욱;이승환;이훈구;한경희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.443-445
    • /
    • 1995
  • Since the residential load is an AC load, while the output of solar cell is a DC power, the photovoltaic system needs the DC/AC converter to utilize solar cell and must provide the sinusoidal wave current and voltage with unity power factor in the case of driving to Interact with utility line. It is always necessary for the output of solar cell to operate in the vicinity of maximum power point, since it is greatly fluctuated by insolation. This paper treats that we will constitute a single phase PWM voltage source inverter and trace the modulation index which always maximize the output of solar cell in propotion to insolation variation and prove it by simulation that we can provide current wave, which is nearly sinusoidal wave with unity power factor, for load and utility line.

  • PDF

SHE-PWM을 적용한 STATCOM에 의한 저차고조파 제거 방법 (Elemination of Low Order Harmonics from STATCOM using SHE-PWM)

  • 최순호;김찬기;이성두
    • 전력전자학회논문지
    • /
    • 제19권5호
    • /
    • pp.450-456
    • /
    • 2014
  • In HVDC converters that employ a line-commutated control, reactive power is absorbed by the rectifier and inverter terminals during AC/DC conversion. An AC filter usually consists of filters and large shunt capacitors to supply reactive power to the HVDC station. When STATCOM is used to supply reactive power to the HVDC system with AC filter, the low-order harmonics generated from STATCOM can result in a resonance between the shunt capacitor and AC network. Therefore, a control strategy based on selective harmonic elimination is adopted to minimize the low-order harmonics from STATCOM. The cancellation of harmonic instabilities is verified through simulations in PSCAD/EMTDC.

고속전철용 보조전원장치 시스템 조합시험 (Combined test of Power Supply System for Korean High Speed Train)

  • 조현욱;김연충;김태환;장경현;김철호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.619-625
    • /
    • 2008
  • Electrical Power supply System conditions of korea high speed train consists of main transformer, four AC-DC PWM converter of Auxiliary Block, Battery Charger in Power Car and Trailer Car, Trailer Inverter, Auxiliary inverter. Main transformer, at nominal voltage of 25kv supplied to secondary winding nominal output Voltage 383Vac, The Auxiliary block consists of AC-DC converters for generating 670VDC power, Auxiliary inverters for ventilation and air compressor, Trailer car inverter provide three phase power supplies at 440Vac for air conditioning and heating. The Battery charger Trailer and Power car supplies 72VDC all necessary equipment to energize the trainset equipment and suppy essential control. This Paper introduces the combined test results of the power supply system for korea high speed train. The main purpose of this combined test is to verify the performance of the power supply system that is designed to operate up to full load test.

  • PDF