미래 해상 환경 변화에 맞춰 해상 항로표지가 다양한 분야에 걸쳐 활용되며 쓰임이 증대되고 있다. 해상 항로표지는 항행하는 선박의 위치, 방향 및 장애물의 위치를 알려주는 항행보조시설로, 현재는 단순히 선박의 안전 항해를 도울 뿐 아니라, 여러 센서와 카메라를 탑재하여 해양 기상환경을 파악하고 기록하는 수단으로 변모하고 있다. 하지만 주로 선박과의 충돌로 인해 소실되며 특히 해무로 인한 관측 시야 저하로 안전사고가 발생한다. 해무 유입은 항만, 해상교통 등에 위험을 초래하고 시간과 지역에 따라 발생 가능성의 차이가 커 예측이 쉽지 않다. 또한, 전 해역에 분포되어있는 항로표지의 특성상 개별 관리가 어렵다. 이를 해결하고자 본 논문에서는 항로표지에 설치된 카메라에서 촬영한 영상으로 해무 강도를 측정하는 방안을 통하여 해양 기상환경을 파악해 보완하고 날씨로 인한 항로표지 안전사고를 해결하는 것을 목적으로 한다. 설치가 어렵고 높은 비용이 드는 광학 및 온도 센서 대신 항로표지에 설치된 카메라의 일반 영상을 사용하여 해무 강도를 측정한다. 덧붙여 다양한 해역에서의 실시간 해무 파악을 위한 선행 연구로, 안개 모델(Haze Model), Dark Channel Prior(DCP)를 이용해 해무 강도 측정 기준을 제시한다. DCP를 적용한 영상에서 특정 픽셀값의 문턱값(Threshold value)을 설정하고, 이를 기준으로 전체 영상에서 해무가 존재하지 않는 픽셀의 수를 통해 해무 강도를 추정한다. 합성 해무 데이터셋과 실제 해무 동영상을 캡처해 만든 실제 해무 데이터셋으로 해무 강도 측정 여부를 검증했다.
Among the technologies of the 4th industrial revolution, drones that have grown rapidly and are being used in various industries can be operated by the pilot directly or can be operated automatically through programming. In order to be controlled by a pilot or to operate automatically, it is essential to predict and analyze the optimal path for the drone to move without obstacles. In this paper, after securing and analyzing the pilot training dataset through the unmanned aerial vehicle piloting training platform designed through prior research, the profile of the dataset that should be preceded to search and derive the optimal route of the unmanned aerial vehicle was designed. The drone pilot training data includes the speed, movement distance, and angle of the drone, and the data set is visualized to unify the properties showing the same pattern into one and preprocess the properties showing the outliers. It is expected that the proposed big data-based profile can be used to predict and analyze the optimal movement path of an unmanned aerial vehicle.
Amal Al-Shahrani;Amjad Alghamdi;Areej Alqurashi;Raghad Alzahrani;Nuha imam
International Journal of Computer Science & Network Security
/
제24권5호
/
pp.1-10
/
2024
Individuals with visual impairments face numerous challenges in their daily lives, with navigating streets and public spaces being particularly daunting. The inability to identify safe crossing locations and assess the feasibility of crossing significantly restricts their mobility and independence. Globally, an estimated 285 million people suffer from visual impairment, with 39 million categorized as blind and 246 million as visually impaired, according to the World Health Organization. In Saudi Arabia alone, there are approximately 159 thousand blind individuals, as per unofficial statistics. The profound impact of visual impairments on daily activities underscores the urgent need for solutions to improve mobility and enhance safety. This study aims to address this pressing issue by leveraging computer vision and deep learning techniques to enhance object detection capabilities. Two models were trained to detect objects: one focused on street crossing obstacles, and the other aimed to search for objects. The first model was trained on a dataset comprising 5283 images of road obstacles and traffic signals, annotated to create a labeled dataset. Subsequently, it was trained using the YOLOv8 and YOLOv5 models, with YOLOv5 achieving a satisfactory accuracy of 84%. The second model was trained on the COCO dataset using YOLOv5, yielding an impressive accuracy of 94%. By improving object detection capabilities through advanced technology, this research seeks to empower individuals with visual impairments, enhancing their mobility, independence, and overall quality of life.
시각-언어 이동 문제는 시각 이해와 언어 이해 능력을 함께 요구하는 복합 지능 문제이다. 본 논문에서는 시각-언어 이동 에이전트를 위한 새로운 학습 모델을 제안한다. 이 모델은 데모 데이터에 기초한 모방 학습과 행동 보상에 기초한 강화 학습을 함께 결합한 복합 학습을 채택하고 있다. 따라서 이 모델은 데모 데이터에 편향될 수 있는 모방 학습의 문제와 상대적으로 낮은 데이터 효율성을 갖는 강화 학습의 문제를 상호 보완적으로 해소할 수 있다. 또한, 제안 모델에서는 기존의 목표 기반 보상 함수들의 문제점을 해결하기 위해 설계된 새로운 경로 기반 보상 함수를 이용한다. 본 논문에서는 Matterport3D 시뮬레이션 환경과 R2R 벤치마크 데이터 집합을 이용한 다양한 실험들을 통해, 제안 모델의 높은 성능을 입증하였다.
본 논문에서는 넓은 지역에서의 영상기반 자동 항법을 위한 실시간 위치인식 및 지도작성 방법을 제안한다. 한 대의 카메라에서 입력된 영상으로부터 제안된 방법은 6 자유도 카메라 자세와 3 차원 특징점 위치를 연속적으로 계산한다. 제안된 방법은 넓은 지역을 주행하며 촬영된 영상에 적용하여 그 위치와 환경지도를 성공적으로 작성하였이다. 본 논문에서는 이진기술자(binary descriptor)와 수치-위상(metric-topological)지도 표현법을 사용하여 GPU 나 영상의 축소 없이 실시간 성능과 광범위한 지역에서의 회귀점 검출(loop detection)을 하였다. 제안된 방법은 여러 환경에서 촬영된 영상과, 해당 영상의 GPS 기준값과 비교하여 평가하였다.
As there is growing concern about the environmental impact of greenhouse gas emissions from ships, the International Maritime Organization (IMO) has introduced several regulations targeting reductions in carbon dioxide emissions of 50% by 2050. This study pays particular attention to the carbon intensity indicator (CII) and investigates the impact of slow steaming, one of the short-term measures in the regulation, on containership operations. To this end, a dataset of 8 containerships with various ages and sizes was collected. Based on operation data in 2021, the CII ratings of the containerships were estimated in the business-as-usual scenario for the 2023-2030 period. Then, the speed reductions required to keep the minimum CII rating were calculated for individual containerships. Finally, working day losses resulting from the speed reductions were calculated. The findings in this study were threefold. First, it was found that containerships will undergo degradation in the CII rating every 3 or 4 years without slow steaming. Second, a speed reduction of 2 knots between 2023 and 2030 is required to keep the minimum CII rating. Finally, speed reductions result in the loss of as many as 6 or 7 working days per year.
위성항법시스템이 없는 달 표면에서 탐사 로버의 신뢰성 있는 항법성능을 확보하기 위해 관성측정장치나 카메라와 같은 추가적인 센서를 활용한 항법 알고리즘이 필수적이다. 일례로 미국의 화성 탐사 로버에 스테레오 카메라를 이용한 비주얼 오도메트리(VO)가 성공적으로 사용된 바 있다. 본 논문에서는 달 유사환경의 스테레오 흑백 이미지를 입력받아 달 탐사 로버의 6 자유도 움직임을 추정하였다. 제안하는 알고리즘은 희소 이미지 정렬 기반의 준직접방식 VO를 통해 연속된 이미지간의 상대 움직임을 추정한다. 또한 비선형성에 취약한 직접방식 VO를 보완하고자 최적화 시 로버의 움직임에 따른 가중치를 비용 함수에 고려하였고, 그 가중치는 이전 단계에서 계산된 포즈의 선형 함수로 제안한다. 본 논문에서 제안하는 로버의 움직임에 따른 가중치를 통해 실제 달 환경의 특성을 반영하는 토론토 대학의 달 유사환경 데이터셋에서 VO 성능이 향상됨을 확인하였다.
본 논문에서는 시각-언어 이동 문제를 위한 새로운 심층 신경망 모델인 LVLN을 제안한다. LVLN 모델에서는 자연어 지시의 언어적 특징과 입력 영상 전체의 시각적 특징들 외에, 자연어 지시에서 언급하는 주요 장소와 랜드마크 물체들을 입력 영상에서 탐지해내고 이 정보들을 추가적으로 이용한다. 또한 이 모델은 자연어 지시 내 각 개체와 영상 내 각 관심 영역, 그리고 영상에서 탐지된 개별 물체 및 장소 간의 서로 연관성을 높일 수 있도록 맥락 정보 기반의 주의 집중 메커니즘을 이용한다. 그뿐만 아니라, LVLN 모델은 에이전트의 목표 도달 성공율을 향상시키기 위해, 목표를 향한 실질적인 접근을 점검할 수 있는 진척 점검기 모듈도 포함하고 있다. Matterport3D 시뮬레이터와 Room-to-Room (R2R) 벤치마크 데이터 집합을 이용한 다양한 실험들을 통해, 본 논문에서 제안하는 LVLN 모델의 높은 성능을 확인할 수 있었다.
In this paper, we propose an agent model for Language-Driven Zero-Shot Object Navigation (L-ZSON) tasks, which takes in a freeform language description of an unseen target object and navigates to find out the target object in an inexperienced environment. In general, an L-ZSON agent should able to visually ground the target object by understanding the freeform language description of it and recognizing the corresponding visual object in camera images. Moreover, the L-ZSON agent should be also able to build a rich spatial context map over the unknown environment and decide efficient exploration actions based on the map until the target object is present in the field of view. To address these challenging issues, we proposes AML (Agent Model for L-ZSON), a novel L-ZSON agent model to make effective use of AI foundation models such as Large Language Model (LLM) and Vision-Language model (VLM). In order to tackle the visual grounding issue of the target object description, our agent model employs GLEE, a VLM pretrained for locating and identifying arbitrary objects in images and videos in the open world scenario. To meet the exploration policy issue, the proposed agent model leverages the commonsense knowledge of LLM to make sequential navigational decisions. By conducting various quantitative and qualitative experiments with RoboTHOR, the 3D simulation platform and PASTURE, the L-ZSON benchmark dataset, we show the superior performance of the proposed agent model.
본 연구에서는 사례기반추론(case-based reasoning)을 기본으로 하여 실무자의 분류 기법 또는 분류 구조 결정을 돕는 의사 결정 지원 시스템의 모델을 제시한다. 주요한 네 가지 고려 항목은 자료종류(dataset), 위치(location), 기후(climate), 그리고 분류항목(class)이며 사용자는 이들 네 항목에 대해 적합한 값을 선택하게 된다. 본 시스템은 색인화(indexing) 규칙에 따라 관계형 데이터베이스에 저장된 사례들을 추출하여 제시하며 사용자는 그 중 가장 높은 일치도를 보인 사례들을 참고할 수 있다. 본 연구에서는 위계구조를 통해 다양한 분류 조건을 스크린 상에서 선택할 수 있게 함으로써 사용자가 이에 내재된 논리를 분류 구조의 설계에 반영할 수 있게 한다. 또한 Statistics 기능을 통해 여러 사례의 항목당 분포를 사용자가 검토할 수 있게 함으로써 가장 적합한 사례를 의사결정 지원 시스템과의 피드백을 통해 찾아낼 수 있게 해준다. 이밖에 분류 조건을 변화 시켜가면서 상황의 변화를 참고할 수 있도록 Navigation 기능을 고안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.