• Title/Summary/Keyword: dataset

Search Result 4,026, Processing Time 0.03 seconds

Comparison of Error Rate and Prediction of Compression Index of Clay to Machine Learning Models using Orange Mining (오렌지마이닝을 활용한 기계학습 모델별 점토 압축지수의 오차율 및 예측 비교)

  • Yoo-Jae Woong;Woo-Young Kim;Tae-Hyung Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.3
    • /
    • pp.15-22
    • /
    • 2024
  • Predicting ground settlement during the improvement of soft ground and the construction of a structure is an crucial factor. Numerous studies have been conducted, and many prediction equations have been proposed to estimate settlement. Settlement can be calculated using the compression index of clay. In this study, data on water content, void ratio, liquid limit, plastic limit, and compression index from the Busan New Port area were collected to construct a dataset. Correlation analysis was conducted among the collected data. Machine learning algorithms, including Random Forest, Neural Network, Linear Regression, Ada Boost, and Gradient Boosting, were applied using the Orange mining program to propose compression index prediction models. The models' results were evaluated by comparing RMSE and MAPE values, which indicate error rates, and R2 values, which signify the models' significance. As a result, water content showed the highest correlation, while the plastic limit showed a somewhat lower correlation than other characteristics. Among the compared models, the AdaBoost model demonstrated the best performance. As a result of comparing each model, the AdaBoost model had the lowest error rate and a large coefficient of determination.

Clustering Method based on Genre Interest for Cold-Start Problem in Movie Recommendation (영화 추천 시스템의 초기 사용자 문제를 위한 장르 선호 기반의 클러스터링 기법)

  • You, Tithrottanak;Rosli, Ahmad Nurzid;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.57-77
    • /
    • 2013
  • Social media has become one of the most popular media in web and mobile application. In 2011, social networks and blogs are still the top destination of online users, according to a study from Nielsen Company. In their studies, nearly 4 in 5active users visit social network and blog. Social Networks and Blogs sites rule Americans' Internet time, accounting to 23 percent of time spent online. Facebook is the main social network that the U.S internet users spend time more than the other social network services such as Yahoo, Google, AOL Media Network, Twitter, Linked In and so on. In recent trend, most of the companies promote their products in the Facebook by creating the "Facebook Page" that refers to specific product. The "Like" option allows user to subscribed and received updates their interested on from the page. The film makers which produce a lot of films around the world also take part to market and promote their films by exploiting the advantages of using the "Facebook Page". In addition, a great number of streaming service providers allows users to subscribe their service to watch and enjoy movies and TV program. They can instantly watch movies and TV program over the internet to PCs, Macs and TVs. Netflix alone as the world's leading subscription service have more than 30 million streaming members in the United States, Latin America, the United Kingdom and the Nordics. As the matter of facts, a million of movies and TV program with different of genres are offered to the subscriber. In contrast, users need spend a lot time to find the right movies which are related to their interest genre. Recent years there are many researchers who have been propose a method to improve prediction the rating or preference that would give the most related items such as books, music or movies to the garget user or the group of users that have the same interest in the particular items. One of the most popular methods to build recommendation system is traditional Collaborative Filtering (CF). The method compute the similarity of the target user and other users, which then are cluster in the same interest on items according which items that users have been rated. The method then predicts other items from the same group of users to recommend to a group of users. Moreover, There are many items that need to study for suggesting to users such as books, music, movies, news, videos and so on. However, in this paper we only focus on movie as item to recommend to users. In addition, there are many challenges for CF task. Firstly, the "sparsity problem"; it occurs when user information preference is not enough. The recommendation accuracies result is lower compared to the neighbor who composed with a large amount of ratings. The second problem is "cold-start problem"; it occurs whenever new users or items are added into the system, which each has norating or a few rating. For instance, no personalized predictions can be made for a new user without any ratings on the record. In this research we propose a clustering method according to the users' genre interest extracted from social network service (SNS) and user's movies rating information system to solve the "cold-start problem." Our proposed method will clusters the target user together with the other users by combining the user genre interest and the rating information. It is important to realize a huge amount of interesting and useful user's information from Facebook Graph, we can extract information from the "Facebook Page" which "Like" by them. Moreover, we use the Internet Movie Database(IMDb) as the main dataset. The IMDbis online databases that consist of a large amount of information related to movies, TV programs and including actors. This dataset not only used to provide movie information in our Movie Rating Systems, but also as resources to provide movie genre information which extracted from the "Facebook Page". Formerly, the user must login with their Facebook account to login to the Movie Rating System, at the same time our system will collect the genre interest from the "Facebook Page". We conduct many experiments with other methods to see how our method performs and we also compare to the other methods. First, we compared our proposed method in the case of the normal recommendation to see how our system improves the recommendation result. Then we experiment method in case of cold-start problem. Our experiment show that our method is outperform than the other methods. In these two cases of our experimentation, we see that our proposed method produces better result in case both cases.

Analyzing Contextual Polarity of Unstructured Data for Measuring Subjective Well-Being (주관적 웰빙 상태 측정을 위한 비정형 데이터의 상황기반 긍부정성 분석 방법)

  • Choi, Sukjae;Song, Yeongeun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.83-105
    • /
    • 2016
  • Measuring an individual's subjective wellbeing in an accurate, unobtrusive, and cost-effective manner is a core success factor of the wellbeing support system, which is a type of medical IT service. However, measurements with a self-report questionnaire and wearable sensors are cost-intensive and obtrusive when the wellbeing support system should be running in real-time, despite being very accurate. Recently, reasoning the state of subjective wellbeing with conventional sentiment analysis and unstructured data has been proposed as an alternative to resolve the drawbacks of the self-report questionnaire and wearable sensors. However, this approach does not consider contextual polarity, which results in lower measurement accuracy. Moreover, there is no sentimental word net or ontology for the subjective wellbeing area. Hence, this paper proposes a method to extract keywords and their contextual polarity representing the subjective wellbeing state from the unstructured text in online websites in order to improve the reasoning accuracy of the sentiment analysis. The proposed method is as follows. First, a set of general sentimental words is proposed. SentiWordNet was adopted; this is the most widely used dictionary and contains about 100,000 words such as nouns, verbs, adjectives, and adverbs with polarities from -1.0 (extremely negative) to 1.0 (extremely positive). Second, corpora on subjective wellbeing (SWB corpora) were obtained by crawling online text. A survey was conducted to prepare a learning dataset that includes an individual's opinion and the level of self-report wellness, such as stress and depression. The participants were asked to respond with their feelings about online news on two topics. Next, three data sources were extracted from the SWB corpora: demographic information, psychographic information, and the structural characteristics of the text (e.g., the number of words used in the text, simple statistics on the special characters used). These were considered to adjust the level of a specific SWB. Finally, a set of reasoning rules was generated for each wellbeing factor to estimate the SWB of an individual based on the text written by the individual. The experimental results suggested that using contextual polarity for each SWB factor (e.g., stress, depression) significantly improved the estimation accuracy compared to conventional sentiment analysis methods incorporating SentiWordNet. Even though literature is available on Korean sentiment analysis, such studies only used only a limited set of sentimental words. Due to the small number of words, many sentences are overlooked and ignored when estimating the level of sentiment. However, the proposed method can identify multiple sentiment-neutral words as sentiment words in the context of a specific SWB factor. The results also suggest that a specific type of senti-word dictionary containing contextual polarity needs to be constructed along with a dictionary based on common sense such as SenticNet. These efforts will enrich and enlarge the application area of sentic computing. The study is helpful to practitioners and managers of wellness services in that a couple of characteristics of unstructured text have been identified for improving SWB. Consistent with the literature, the results showed that the gender and age affect the SWB state when the individual is exposed to an identical queue from the online text. In addition, the length of the textual response and usage pattern of special characters were found to indicate the individual's SWB. These imply that better SWB measurement should involve collecting the textual structure and the individual's demographic conditions. In the future, the proposed method should be improved by automated identification of the contextual polarity in order to enlarge the vocabulary in a cost-effective manner.

A Study on the Buyer's Decision Making Models for Introducing Intelligent Online Handmade Services (지능형 온라인 핸드메이드 서비스 도입을 위한 구매자 의사결정모형에 관한 연구)

  • Park, Jong-Won;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.119-138
    • /
    • 2016
  • Since the Industrial Revolution, which made the mass production and mass distribution of standardized goods possible, machine-made (manufactured) products have accounted for the majority of the market. However, in recent years, the phenomenon of purchasing even more expensive handmade products has become a noticeable trend as consumers have started to acknowledge the value of handmade products, such as the craftsman's commitment, belief in their quality and scarcity, and the sense of self-esteem from having them,. Consumer interest in these handmade products has shown explosive growth and has been coupled with the recent development of three-dimensional (3D) printing technologies. Etsy.com is the world's largest online handmade platform. It is no different from any other online platform; it provides an online market where buyers and sellers virtually meet to share information and transact business. However, Etsy.com is different in that shops within this platform only deal with handmade products in a variety of categories, ranging from jewelry to toys. Since its establishment in 2005, despite being limited to handmade products, Etsy.com has enjoyed rapid growth in membership, transaction volume, and revenue. Most recently in April 2015, it raised funds through an initial public offering (IPO) of more than 1.8 billion USD, which demonstrates the huge potential of online handmade platforms. After the success of Etsy.com, various types of online handmade platforms such as Handmade at Amazon, ArtFire, DaWanda, and Craft is ART have emerged and are now competing with each other, at the same time, which has increased the size of the market. According to Deloitte's 2015 holiday survey on which types of gifts the respondents plan to buy during the holiday season, about 16% of U.S. consumers chose "homemade or craft items (e.g., Etsy purchase)," which was the same rate as those for the computer game and shoes categories. This indicates that consumer interests in online handmade platforms will continue to rise in the future. However, this high interest in the market for handmade products and their platforms has not yet led to academic research. Most extant studies have only focused on machine-made products and intelligent services for them. This indicates a lack of studies on handmade products and their intelligent services on virtual platforms. Therefore, this study used signaling theory and prior research on the effects of sellers' characteristics on their performance (e.g., total sales and price premiums) in the buyer-seller relationship to identify the key influencing e-Image factors (e.g., reputation, size, information sharing, and length of relationship). Then, their impacts on the performance of shops within the online handmade platform were empirically examined; the dataset was collected from Etsy.com through the application of web harvesting technology. The results from the structural equation modeling revealed that the reputation, size, and information sharing have significant effects on the total sales, while the reputation and length of relationship influence price premiums. This study extended the online platform research into online handmade platform research by identifying key influencing e-Image factors on within-platform shop's total sales and price premiums based on signaling theory and then performed a statistical investigation. These findings are expected to be a stepping stone for future studies on intelligent online handmade services as well as handmade products themselves. Furthermore, the findings of the study provide online handmade platform operators with practical guidelines on how to implement intelligent online handmade services. They should also help shop managers build their marketing strategies in a more specific and effective manner by suggesting key influencing e-Image factors. The results of this study should contribute to the vitalization of intelligent online handmade services by providing clues on how to maximize within-platform shops' total sales and price premiums.

A Study on Analyzing Sentiments on Movie Reviews by Multi-Level Sentiment Classifier (영화 리뷰 감성분석을 위한 텍스트 마이닝 기반 감성 분류기 구축)

  • Kim, Yuyoung;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.71-89
    • /
    • 2016
  • Sentiment analysis is used for identifying emotions or sentiments embedded in the user generated data such as customer reviews from blogs, social network services, and so on. Various research fields such as computer science and business management can take advantage of this feature to analyze customer-generated opinions. In previous studies, the star rating of a review is regarded as the same as sentiment embedded in the text. However, it does not always correspond to the sentiment polarity. Due to this supposition, previous studies have some limitations in their accuracy. To solve this issue, the present study uses a supervised sentiment classification model to measure a more accurate sentiment polarity. This study aims to propose an advanced sentiment classifier and to discover the correlation between movie reviews and box-office success. The advanced sentiment classifier is based on two supervised machine learning techniques, the Support Vector Machines (SVM) and Feedforward Neural Network (FNN). The sentiment scores of the movie reviews are measured by the sentiment classifier and are analyzed by statistical correlations between movie reviews and box-office success. Movie reviews are collected along with a star-rate. The dataset used in this study consists of 1,258,538 reviews from 175 films gathered from Naver Movie website (movie.naver.com). The results show that the proposed sentiment classifier outperforms Naive Bayes (NB) classifier as its accuracy is about 6% higher than NB. Furthermore, the results indicate that there are positive correlations between the star-rate and the number of audiences, which can be regarded as the box-office success of a movie. The study also shows that there is the mild, positive correlation between the sentiment scores estimated by the classifier and the number of audiences. To verify the applicability of the sentiment scores, an independent sample t-test was conducted. For this, the movies were divided into two groups using the average of sentiment scores. The two groups are significantly different in terms of the star-rated scores.

Social Network-based Hybrid Collaborative Filtering using Genetic Algorithms (유전자 알고리즘을 활용한 소셜네트워크 기반 하이브리드 협업필터링)

  • Noh, Heeryong;Choi, Seulbi;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.19-38
    • /
    • 2017
  • Collaborative filtering (CF) algorithm has been popularly used for implementing recommender systems. Until now, there have been many prior studies to improve the accuracy of CF. Among them, some recent studies adopt 'hybrid recommendation approach', which enhances the performance of conventional CF by using additional information. In this research, we propose a new hybrid recommender system which fuses CF and the results from the social network analysis on trust and distrust relationship networks among users to enhance prediction accuracy. The proposed algorithm of our study is based on memory-based CF. But, when calculating the similarity between users in CF, our proposed algorithm considers not only the correlation of the users' numeric rating patterns, but also the users' in-degree centrality values derived from trust and distrust relationship networks. In specific, it is designed to amplify the similarity between a target user and his or her neighbor when the neighbor has higher in-degree centrality in the trust relationship network. Also, it attenuates the similarity between a target user and his or her neighbor when the neighbor has higher in-degree centrality in the distrust relationship network. Our proposed algorithm considers four (4) types of user relationships - direct trust, indirect trust, direct distrust, and indirect distrust - in total. And, it uses four adjusting coefficients, which adjusts the level of amplification / attenuation for in-degree centrality values derived from direct / indirect trust and distrust relationship networks. To determine optimal adjusting coefficients, genetic algorithms (GA) has been adopted. Under this background, we named our proposed algorithm as SNACF-GA (Social Network Analysis - based CF using GA). To validate the performance of the SNACF-GA, we used a real-world data set which is called 'Extended Epinions dataset' provided by 'trustlet.org'. It is the data set contains user responses (rating scores and reviews) after purchasing specific items (e.g. car, movie, music, book) as well as trust / distrust relationship information indicating whom to trust or distrust between users. The experimental system was basically developed using Microsoft Visual Basic for Applications (VBA), but we also used UCINET 6 for calculating the in-degree centrality of trust / distrust relationship networks. In addition, we used Palisade Software's Evolver, which is a commercial software implements genetic algorithm. To examine the effectiveness of our proposed system more precisely, we adopted two comparison models. The first comparison model is conventional CF. It only uses users' explicit numeric ratings when calculating the similarities between users. That is, it does not consider trust / distrust relationship between users at all. The second comparison model is SNACF (Social Network Analysis - based CF). SNACF differs from the proposed algorithm SNACF-GA in that it considers only direct trust / distrust relationships. It also does not use GA optimization. The performances of the proposed algorithm and comparison models were evaluated by using average MAE (mean absolute error). Experimental result showed that the optimal adjusting coefficients for direct trust, indirect trust, direct distrust, indirect distrust were 0, 1.4287, 1.5, 0.4615 each. This implies that distrust relationships between users are more important than trust ones in recommender systems. From the perspective of recommendation accuracy, SNACF-GA (Avg. MAE = 0.111943), the proposed algorithm which reflects both direct and indirect trust / distrust relationships information, was found to greatly outperform a conventional CF (Avg. MAE = 0.112638). Also, the algorithm showed better recommendation accuracy than the SNACF (Avg. MAE = 0.112209). To confirm whether these differences are statistically significant or not, we applied paired samples t-test. The results from the paired samples t-test presented that the difference between SNACF-GA and conventional CF was statistical significant at the 1% significance level, and the difference between SNACF-GA and SNACF was statistical significant at the 5%. Our study found that the trust/distrust relationship can be important information for improving performance of recommendation algorithms. Especially, distrust relationship information was found to have a greater impact on the performance improvement of CF. This implies that we need to have more attention on distrust (negative) relationships rather than trust (positive) ones when tracking and managing social relationships between users.

Comparison of Association Rule Learning and Subgroup Discovery for Mining Traffic Accident Data (교통사고 데이터의 마이닝을 위한 연관규칙 학습기법과 서브그룹 발견기법의 비교)

  • Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.1-16
    • /
    • 2015
  • Traffic accident is one of the major cause of death worldwide for the last several decades. According to the statistics of world health organization, approximately 1.24 million deaths occurred on the world's roads in 2010. In order to reduce future traffic accident, multipronged approaches have been adopted including traffic regulations, injury-reducing technologies, driving training program and so on. Records on traffic accidents are generated and maintained for this purpose. To make these records meaningful and effective, it is necessary to analyze relationship between traffic accident and related factors including vehicle design, road design, weather, driver behavior etc. Insight derived from these analysis can be used for accident prevention approaches. Traffic accident data mining is an activity to find useful knowledges about such relationship that is not well-known and user may interested in it. Many studies about mining accident data have been reported over the past two decades. Most of studies mainly focused on predict risk of accident using accident related factors. Supervised learning methods like decision tree, logistic regression, k-nearest neighbor, neural network are used for these prediction. However, derived prediction model from these algorithms are too complex to understand for human itself because the main purpose of these algorithms are prediction, not explanation of the data. Some of studies use unsupervised clustering algorithm to dividing the data into several groups, but derived group itself is still not easy to understand for human, so it is necessary to do some additional analytic works. Rule based learning methods are adequate when we want to derive comprehensive form of knowledge about the target domain. It derives a set of if-then rules that represent relationship between the target feature with other features. Rules are fairly easy for human to understand its meaning therefore it can help provide insight and comprehensible results for human. Association rule learning methods and subgroup discovery methods are representing rule based learning methods for descriptive task. These two algorithms have been used in a wide range of area from transaction analysis, accident data analysis, detection of statistically significant patient risk groups, discovering key person in social communities and so on. We use both the association rule learning method and the subgroup discovery method to discover useful patterns from a traffic accident dataset consisting of many features including profile of driver, location of accident, types of accident, information of vehicle, violation of regulation and so on. The association rule learning method, which is one of the unsupervised learning methods, searches for frequent item sets from the data and translates them into rules. In contrast, the subgroup discovery method is a kind of supervised learning method that discovers rules of user specified concepts satisfying certain degree of generality and unusualness. Depending on what aspect of the data we are focusing our attention to, we may combine different multiple relevant features of interest to make a synthetic target feature, and give it to the rule learning algorithms. After a set of rules is derived, some postprocessing steps are taken to make the ruleset more compact and easier to understand by removing some uninteresting or redundant rules. We conducted a set of experiments of mining our traffic accident data in both unsupervised mode and supervised mode for comparison of these rule based learning algorithms. Experiments with the traffic accident data reveals that the association rule learning, in its pure unsupervised mode, can discover some hidden relationship among the features. Under supervised learning setting with combinatorial target feature, however, the subgroup discovery method finds good rules much more easily than the association rule learning method that requires a lot of efforts to tune the parameters.

Identification of Characteristics and Risk Factors Associated with Mortality in Hydrops Fetalis (태아수종의 특성 및 사망률과 연관된 위험인자)

  • Ko, Hoon;Lee, Byong-Sop;Kim, Ki-Soo;Won, Hye-Sung;Lee, Pil-Ryang;Shim, Jae-Yoon;Kim, Ahm;Kim, Ai-Rhan
    • Neonatal Medicine
    • /
    • v.18 no.2
    • /
    • pp.221-227
    • /
    • 2011
  • Purpose: The objectives were to identify the characteristics of neonates with hydrops fetalis, and to identify the risk factors associated with mortality. Methods: A retrospective review of AMC (Asan Medical Center) dataset was performed from January 1990 to June 2009. The characteristics of 71 patients with hydrops fetalis were investigated and they were divided into two groups: the survived group and the expired group. Various perinatal and neonatal factors in two groups were compared to find out risk factors associated with mortality based on univariate analysis, followed by multiple regression analyses (SPSS version 18.0). Results: Of those 71 neonates (average gestational age: 33 weeks, birth weight: 2.6 kg), 38 survived, 33 died, resulting in overall mortality rate of 46.5%. The most common etiology was idiopathic followed by chylothorax, cardiac anomalies, twin-to-twin transfusion, meconium peritonitis, cardiac arrythmias, and congenital infections. Factors that were associated independently with mortality in logistic regression analyses were low 5-minutes Apgar score, hyaline membrane disease and delayed in achieving 50th percentile ideal body weight for appropriate gestational age by 10 days. Conclusion: In this study, 5-minutes Apgar score, hyaline membrane disease and delayed in achieving 50th percentile ideal body weight for appropriate gestational age by 10 days were significant risk factors associated with mortality in hydrops fetalis. Therefore, the risk of death among neonates with hydrops fetalis depends on the illness immediately after birth and severity of hydrops fetalis. Informations from this study may prove useful in prediction of prognosis to neonates with hydrops fetalis.

Trophic State Index (TSI) and Empirical Models, Based on Water Quality Parameters, in Korean Reservoirs (우리나라 대형 인공호에서 영양상태 평가 및 수질 변수를 이용한 경험적 모델 구축)

  • Park, Hee-Jung;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.14-30
    • /
    • 2007
  • The purpose of this study was to evaluate trophic conditions of various Korean reservoirs using Trophic State Index (TSI) and predict the reservoir conditions by empirical models. The water quality dataset (2000, 2001) used here were obtained from the Ministry of Environment, Korea. The water quality, based on multi-parameters of dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), suspended solid (SS), Secchi depth (SD), chlorophyll-${\alpha}$ (CHL), and conductivity largely varied depending on the sampling watersheds and seasons. In general, trophic conditions declined along the longitudinal axis of headwater-to-the dam and the largest seasonal variations occurred during the summer monsoon of July-August. Major inputs of TP occurred during the monsoon (r=0.656, p=0.002) and this pattern was similar to solid dynamics of SS (r=0.678, p<0.001). Trophic parameters including CHL, TP, SD, and TN were employed to evaluate how the water systems varies with season. Trophic State Index (TSI, Carlson, 1977), based on TSI (CHL), TSI (TP), and TSI (SD), ranged from mesotrophic to eutrophic. However, the trophic state, based on TSI (TN), indicated eutrophic-hypereutrophic conditions in the entire reservoirs, regardless of the seasons, indicating a N-rich system. Overall, nutrient data showed that phosphorus was a primary factor regulating the trophic state. The relationships between CHL (eutrophication index) vs. trophic parameters (TN, TP, and SD) were analysed to develop empirical models which can predict the trophic status. Regression analyses of log-transformed seasonal CHL against TP showed that the value of $R^2$ was 0.31 (p=0.017) in the premonsoon but was 0.69 (p<0.001) during the postmonsoon, indicating a greater algal response to the phosphorus during the postmonsoon. In contrast, SD had reverse relation with TP, CHL during all season. TN had weak relations with CHL during all seasons. Overall, data suggest that TP seems to be a good predictor for algal biomass, estimated by CHL, as shown in the empirical models.

Nutrients and Chlorophyll Dynamics Along the Longitudinal Gradients of Daechung Reservoir (대청호에서 종적구배에 따른 영양염류 및 엽록소의 역동성)

  • Bae, Dae-Yeul;Yang, Eun-Chan;Jung, Seung-Hyun;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.285-293
    • /
    • 2007
  • The study was to determine zonal characteristics of nutrients and chlorophyll and evaluate their trophic relations in Daechung Reservoir. For this study, we compared longterm water quality data among three zones along with trophic state using 1993 to 2002 dataset, obtained from the Ministry of Environment, Korea. Total phosphorous (TP), Secchi depth (SD) and chlorophyll (CHL) showed typical longitudinal declines from the riverine to lacustrine zone, but total nitrogen (TN) was not evident. Largest seasonal variations in TP and CHL occurred during the summer monsoon from July to August. In the reservoir, ambient TN averaged 1.67 mg $L^{-1}$ and ratios of TN : TP averaged 88.04, indicating that nitrogen is not likely limited but phosphorus limitation was evident. Trophic State Index (TSI), based on CHL, TP, and SD, varied depending on the zones and seasons. Mean TSI (TP) in the riverine zone was 62 during the monsoon, indicating a hypertrophic condition, whereas the mean was 40 in the lacustrine, indicating a nearly oligotrophic. Values of TSI (CHL) showed maximum in the transition zone during the monsoon. The deviation analysis of TSI showed that about 65% of TSI (CHL)-TSI (TP) and TSI (CHL)-TSI (SD) values were less than zero and the lowest values were -42, indicating an effect of inorganic turbidity on algal growth in the reservoir. Correlation analysis of CHL vs. SD shewed greater correlation coefficient (p<0.001, r=-0.47) in the transition than other two zones (p<0.001, $r{\leq}-0.40$). Correlation analysis of TP vs. CHL was greatest in the lacustrine and TP was minimum in the lacustrine zone, indicating a lowest yield of algal biomass in the lacustrine. Overall data suggests that zonal response of chlorophyll yield at a given nutrient unit is clearly differed among the longitudinal gradients, so the management strategy such as cross sectional modelling should be provided in each zone.