• Title/Summary/Keyword: datalink time delay

Search Result 5, Processing Time 0.019 seconds

A Robust Longitudinal Landing Controller to Datalink Time Delay

  • Lee, Sang-Hyo;Rhee, Ihn-Seok;Kee, Chang-Don;Koo, Hueon-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.886-891
    • /
    • 2003
  • This paper deals with designing a ground-based longitudinal landing controller which is robust to datalink time delays. Time delays occur because forward velocity measurements are downlinked and the controller output commands are uplinked. An $H_{\infty}$ controller was designed by using the input/output decomposition where time delay is modeled as a first-order system with Pade approximation. Linear simulations show that the system tracks well the predefined path and is robust to the variation of time delay.

  • PDF

A Robust Longitudinal Landing Controller to Datalink Time Delay (데이터링크 시간지연에 강건한 종운동 착률제어기 설계)

  • Lee, Sang-Hyo;Rhee, Ihn-Seok;Kee, Chang-Don;Koo, Hueon-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • This paper deals with designing a ground-based longitudinal landing controller which is robust to datalink time delays. Time delays occur because forward velocity measurements are downlinked and the controller output commands are uplinked. An $H_{\infty}$ controller was designed by using the input/output decomposition where time delay is modeled as a first-order system with Pade approximation. Linear simulations show that the system tracks well the predefined path and is robust to the variation of time delay.

Theoretical Maximum Throughput (TMT) Analysis of the Multiple UAVs datalink system using WLAN (IEEE 802.11b) (무선랜 기반의 복수 무인기 통신링크 최대 처리량 분석)

  • Kim, In-Kyu;Moon, Sang-Man
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.118-122
    • /
    • 2013
  • In this study, We show that multiple UAVs (Unmaned Air Vehicle) have datalink system which includes the IEEE 802.11b technology. we are predicting and calculating to the number of the UAV and data rate between UAV and ground control system, using the IEEE 802.11 standards which include the transmit/receive the delay time and theoretical maximum throughput (TMT).

Study on the time-delay compensation of RTK correction message for improvement of continuous position surveying performance under unexpected temporal datalink loss/cut-off (RTK 보정정보 난수신 환경에서의 측위연속성 향상을 위한 시간지연 보상연구)

  • Park, Byung-Woon;Song, June-Sol;Kee, Chang-Don;Yang, Chul-Soo;Tcha, Dek-Kie
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.625-631
    • /
    • 2010
  • In this paper, robustness performance of SNUR message is compared with those of existing ones, RTCM(Radio Technical Commission for Maritime Services) v2 MT(Message Type) 18/19 and MT 20/21 under a poor broadcast condition such as temporary data loss or disconnection We defined the temp oral data loss as 2 second delay and reconnection after disconnection as 7 second latency, and then evaluated its robustness for each latency case by double differentiating the observables. Our result shows that SNUR protocol method can reduce the latency error of the existing RTCM messages by 30~60%. Moreover, a rover using SNUR message, whose latency error is bounded within 1/4 L1 wave length, can figure out its own fixed position continuously in spite of 7 second disconnection, while the other using RTCM message, whose error is larger than half wave length, cannot keep its previous fixed solution.

Priority Based Medium Access Control and Load Balancing Scheme for Shared Situational Awareness in Airborne Tactical Data Link (공중 전술 데이터링크에서 상황인식 공유를 위한 우선순위 기반 매체접속제어와 부하분산 기법)

  • Yang, Kyeongseok;Baek, Hoki;Park, Kyungmi;Lim, Jaesung;Park, Ji Hyeon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.10
    • /
    • pp.1210-1220
    • /
    • 2016
  • As modern warfare has changed into network centered, the ability to share situational awareness among allies become a core competency for performing operational missions. In an airborne environment, it uses a tactical data link such as Link-16 for shared situational awareness. There exist problems when it shares situational awareness over the existing data link that can not allocate slots dynamically or that can not change the number of a slot to be allocated. In addition, there was a problem that can not share this failure so that failed to improves situation awareness because of finite time slot resources. In this paper, we accommodate dynamic slot allocation and changes of slot allocation with mixed structure of TDMA (time division multiple access) and random access. We propose a technique that can be used when available slots are exhausted, and a load balancing method to prevent slot allocation delay when slot requesting or message sending is concentrated on a single subframe.