• Title/Summary/Keyword: data pipe

Search Result 873, Processing Time 0.03 seconds

Development of the Modified Preprocessing Method for Pipe Wall Thinning Data in Nuclear Power Plants (원자력 발전소 배관 감육 측정데이터의 개선된 전처리 방법 개발)

  • Seong-Bin Mun;Sang-Hoon Lee;Young-Jin Oh;Sung-Ryul Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.146-154
    • /
    • 2023
  • In nuclear power plants, ultrasonic test for pipe wall thickness measurement is used during periodic inspections to prevent pipe rupture due to pipe wall thinning. However, when measuring pipe wall thickness using ultrasonic test, a significant amount of measurement error occurs due to the on-site conditions of the nuclear power plant. If the maximum pipe wall thinning rate is decided by the measured pipe wall thickness containing a significant error, the pipe wall thinning rate data have significant uncertainty and systematic overestimation. This study proposes preprocessing of pipe wall thinning measurement data using support vector machine regression algorithm. By using support vector machine, pipe wall thinning measurement data can be smoothened and accordingly uncertainty and systematic overestimation of the estimated pipe wall thinning rate data can be reduced.

Sort-Based Distributed Parallel Data Cube Computation Algorithm using MapReduce (맵리듀스를 이용한 정렬 기반의 데이터 큐브 분산 병렬 계산 알고리즘)

  • Lee, Suan;Kim, Jinho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.196-204
    • /
    • 2012
  • Recently, many applications perform OLAP(On-Line Analytical Processing) over a very large volume of data. Multidimensional data cube is regarded as a core tool in OLAP analysis. This paper focuses on the method how to efficiently compute data cubes in parallel by using a popular parallel processing tool, MapReduce. We investigate efficient ways to implement PipeSort algorithm, a well-known data cube computation method, on the MapReduce framework. The PipeSort executes several (descendant) cuboids at the same time as a pipeline by scanning one (ancestor) cuboid once, which have the same sorting order. This paper proposed four ways implementing the pipeline of the PipeSort on the MapReduce framework which runs across 20 servers. Our experiments show that PipeMap-NoReduce algorithm outperforms the rest algorithms for high-dimensional data. On the contrary, Post-Pipe stands out above the others for low-dimensional data.

Guidance of Mobile Robot for Inspection of Pipe (파이프 내부검사를 위한 이동로봇의 유도방법)

  • 정규원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.480-485
    • /
    • 2002
  • The purpose of this paper is the development of guidance algorithm for a mobile robot which is used to acquire the position and state information of the pipe defects such as crack, damage and through hole. The data used for the algorithm is the range data obtained by the range sensor which is based on an optical triangulation method. The sensor, which consists of a laser slit beam and a CCD camera, measures the 3D profile of the pipe's inner surface. After setting the range sensor on the robot, the robot is put into a pipe. While the camera and the LSB sensor part is rotated about the robot axis, a laser slit beam (LSB) is projected onto the inner surface of the pipe and a CCD camera captures the image. From the images the range data is obtained with respect to the sensor coordinate through a series of image processing and applying the sensor matrix. After the data is transformed into the robot coordinate, the position and orientation of the robot should be obtained in order to guide the robot. In addition, analyzing the data, 3D shape of the pipe is constructed and the numerical data for the defects of the pipe can be found. These data will be used for pipe maintenance and service.

  • PDF

Leak Detection in a Water Pipe Network Using the Principal Component Analysis (주성분 분석을 이용한 상수도 관망의 누수감지)

  • Park, Suwan;Ha, Jaehong;Kim, Kimin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.276-276
    • /
    • 2018
  • In this paper the potential of the Principle Component Analysis(PCA) technique that can be used to detect leaks in water pipe network blocks was evaluated. For this purpose the PCA was conducted to evaluate the relevance of the calculated outliers of a PCA model utilizing the recorded pipe flows and the recorded pipe leak incidents of a case study water distribution system. The PCA technique was enhanced by applying the computational algorithms developed in this study. The algorithms were designed to extract a partial set of flow data from the original 24 hour flow data so that the variability of the flows in the determined partial data set are minimal. The relevance of the calculated outliers of a PCA model and the recorded pipe leak incidents was analyzed. The results showed that the effectiveness of detecting leaks may improve by applying the developed algorithm. However, the analysis suggested that further development on the algorithm is needed to enhance the applicability of the PCA in detecting leaks in real-world water pipe networks.

  • PDF

Pipe Offset Routing Program By Using 3D CAD For Shipbuilding (조선전용 3차원 CAD 시스템을 이용한 Pipe Offset Routing 프로그램 개발)

  • Kim, Sung-Min;Sheen, Dong-Mok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.432-440
    • /
    • 2008
  • Korean shipbuilders are starting to use three dimensional solid CAD systems to enhance their competitiveness in design and production. Despite many merits, three dimensional CAD systems reveal some problems in pipe-line modeling. Pipe-line modeling is heavily dependent on point data in routing. However, since the models built by sweeping or skinning operations do not have data about points and lines on the surfaces, the point data for routing are currently manually calculated by considering the diameters of the pipes and alignment conditions with other pipes. This process is inefficient and prone to errors. In order to enhance the pipe modeling, this paper presents an Offset Routing Program for a three dimensional CAD system, which aids designers to easily define the start points and to generate the pipe routings using reference objects.

A Review of the Progress with Statistical Models of Passive Component Reliability

  • Lydell, Bengt O.Y.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.349-359
    • /
    • 2017
  • During the past 25 years, in the context of probabilistic safety assessment, efforts have been directed towards establishment of comprehensive pipe failure event databases as a foundation for exploratory research to better understand how to effectively organize a piping reliability analysis task. The focused pipe failure database development efforts have progressed well with the development of piping reliability analysis frameworks that utilize the full body of service experience data, fracture mechanics analysis insights, expert elicitation results that are rolled into an integrated and risk-informed approach to the estimation of piping reliability parameters with full recognition of the embedded uncertainties. The discussion in this paper builds on a major collection of operating experience data (more than 11,000 pipe failure records) and the associated lessons learned from data analysis and data applications spanning three decades. The piping reliability analysis lessons learned have been obtained from the derivation of pipe leak and rupture frequencies for corrosion resistant piping in a raw water environment, loss-of-coolant-accident frequencies given degradation mitigation, high-energy pipe break analysis, moderate-energy pipe break analysis, and numerous plant-specific applications of a statistical piping reliability model framework. Conclusions are presented regarding the feasibility of determining and incorporating aging effects into probabilistic safety assessment models.

Evaluation and Application of Prediction Models for the Daylight Performance of a Light-Pipe System (광파이프 시스템의 채광성능 예측모델의 검증 및 적용)

  • Yun, Geun Young;Shin, Ju Young;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • The use of natural light has the potential for improving both the energy efficiency and indoor environmental quality in buildings. A light-pipe system can introduce daylight to spaces that would otherwise not be able to benefit from the advantages of daylight penetration. For the light-pipe system to be widely used in Korea, it is important to quantify its daylighting performance with due consideration regarding the effects imposed by the local climate conditions. This paper presents the evaluation results of existing semi-empirical models to predict daylighting performance of a light-pipe system. The evaluation of the existing models was based on the monitoring data obtained from a underground parking lot in which the light-pipe system was installed. Comparisons were made between the predicted and the monitored data obtained from the study. The results indicated that semi-empirical models which was developed using the experimental data obtained under the Korean climatic conditions had a good prediction performance. We also quantified the effects caused by sky conditions, solar altitudes, room dimensions, and the aspect ratio of a light-pipe system on both the daylighting performance of the light-pipe system and the indoor illuminance distributions of the space using the semi-empirical model. Finally, this paper provides the design guideline of the light-pipe system for its application to an underground parking lot space.

Steady-state flow analysis of pipe network (배관망 내의 정상상태 유동 해석)

  • 채은미;사종엽
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.281-291
    • /
    • 1999
  • A computer code based on a node equation method has been developed for the analysis of pipe network. Both data structure and object-oriented programming technique are used for pipe and node modelling, in which simplification process is applied to complicated and large pipe network. The semi-direct solver, ILU-CGS, improves greatly both the accuracy and the rate of convergence. The computational result of high-pressure pipe network of city gas in Taegu shows the good agreement with the real data.

  • PDF

Heat Transfer Correlations for Air-Water Two-Phase Flow of Different Flow Patterns In a Horizontal Pipe

  • Kim, Dongwoo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1711-1727
    • /
    • 2001
  • Heat transfer coefficient were measured and new correlations were developed for two-phase heat transfer in a horizontal pipe for different patterns. Flow patterns were observed in a transparent circular pipe (2.54 cm I. D. and L/D=96) using an air/water mixture. Visual identification of the flow patterns was supplemented with photographic data and the results were plotted on the flow regime map proposed by Taitel and Dukler and agreed quite well with each other. A two-phase heat transfer experimental setup was built for this study and a total of 150 two-phase heat transfer data with different flow patterns were obtained under a uniform wall heat flux boundary condition. For these data, the superficial Reynolds number ranged from 640 to 35,500 for the liquid and from 540 to 21,200 for the gas. Our previously developed robust two-phase heat transfer correlation for a vertical pipe with modified constants predicted the horizontal pipe air-water heat transfer experimental data with good accuracy. Overall the proposed correlations predicted the data with a mean deviation of 1.0% and an rms deviation of 12%.

  • PDF

A Study on Adequacy of Pipe Deterioration Evaluation Methods using the Endoscope of Water Distribution Pipe (배수관 내시경 조사를 통한 간접적인 관 노후도 평가방법의 적정성 연구)

  • Choi, Tae Ho;Kang, Sin Jae;Choi, Jae Ho;Koo, Ja Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.669-683
    • /
    • 2012
  • The water supply pipes are buried across wide range of areas, so it is hard to spot them using excavation and takes a large amount of expense. Thus, there is a high risk for direct research and application, accompanying many difficulties in implementation of them. Therefore, it is more economical and convenient to use indirect evaluation variables than direct evaluation of the buried pipes in assessing the degree of pipe deterioration. To assess the degree of pipe deterioration using the indirect evaluation variables, it should be done first to identify how and to what extent they affect the degree of deterioration. This study measured the evaluation variables for pipe deterioration using the pipe endoscope and analyzed the measurement results and the degree of impact on the pipes. In addition, this study attempted to evaluate the adequateness of the pipe deterioration evaluation using the indirect variables based on the analysis results. The evaluation variables measured through the pipe endoscope were the thickness of sediments, size of scale, degree of desquamation and condition of connections. For the indirect evaluation variables, the data such as the property data from GIS pipe network map as well as the material, diameter, age and pipe lining material of the pipe, road type, leakage frequency, average water velocity and water pressure using the leakage repair records was collected. Using the collected data, this study comparatively analyzed the indirect evaluation variables for the degree of pipe deterioration and the results from the pipe endoscope to choose appropriate variables for pipe deterioration evaluation and calculated the weights of the indirect variables on the degree of deterioration. The results showed that the order of the impact of indirect variables on deterioration was pipe age > pipe lining material > road type > leakage frequency > average water velocity with their weights of 0.45, 0.20, 0.15, 0.10, and 0.10, respectively. Conclusively, the results suggest that the measures of sediment thickness, scale size, degree of desquamation and condition of connections are appropriate for the evaluation of pipe deterioration and sufficient for the analysis of the impact of the indirect variables on deterioration.