• Title/Summary/Keyword: data payload

Search Result 262, Processing Time 0.031 seconds

Preliminary Design of Electronic System for the Optical Payload

  • Kong Jong-Pil;Heo Haeng-Pal;Kim YoungSun;Park Jong-Euk;Chang Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.637-640
    • /
    • 2005
  • In the development of a electronic system for a optical payload comprising mainly EOS(Electro-Optical Sub-system) and PDTS(Payload Data Transmission Sub-system), many aspects should be investigated and discussed for the easy implementation, for th e higher reliability of operation and for the effective ness in cost, size and weight as well as for the secure interface with components of a satellite bus, etc. As important aspects the interfaces between a satellite bus and a payload, and some design features of the CEU(Camera Electronics Unit) inside the payload are described in this paper. Interfaces between a satellite bus and a payload depend considerably on whether t he payload carries the PMU(Payload Management Un it), which functions as main controller of the Payload, or not. With the PMU inside the payload, EOS and PDTS control is performed through the PMU keep ing the least interfaces of control signals and primary power lines, while the EOS and PDTS control is performed directly by the satellite bus components using relatively many control signals when no PMU exists inside the payload. For the CEU design the output channel configurations of panchromatic and multi-spectral bands including the video image data inter face between EOS and PDTS are described conceptually. The timing information control which is also important and necessary to interpret the received image data is described.

  • PDF

Throughput Analysis of SBC for MSC on KOMPSAT-2

  • Heo H.P.;Kong J.P.;Kim Y.S.;Park J.E.;Chang Y.J.;Lee S.H.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.593-596
    • /
    • 2005
  • The MSC is a remote sensing instrument with very high performance that is to be installed on KOMPSAT2 satellite. The MSC consists of EOS (Electro-Optic Subsystem), PMU (Payload Management Unit) and PDTS (Payload Data Transmission Subsystem). PMU controls and monitors all the other payload units by sending commands and collecting telemetry. PMU is in charge of interfacing between payload system and satellite bus system. PMU gets commands from ground-station via OBC (On-Board Computer) that is a main controller of the satellite bus system and sends telemetry to the ground-station via OBC. There is a processor module, called SBC (Single Board Computer) in the PMU. The SBC is a main controller of the MSC system. The main roles of the SBC are payload mission management, command validation and execution, telemetry collection and monitoring, ancillary data handling, event reporting, power control of payload sub-units and communication with these units. Intel's 80486DX2 processor has been used for the SBC. Due to the fact that the SBC plays important roles for imaging mission execution and handles a lot of control data that is required for payload operation, it is required to make analysis of the CPU load when it is in maximum operation mode. In this paper, the analysis and measurement results of the SBC throughput in the maximum operation mode.

  • PDF

The Study for the KOMPSAT-3 Image Data Compression

  • Lee S.G.;Lee S.T.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.298-300
    • /
    • 2005
  • Satellite payload on-board date compression unit are use for saving date storage space and reducing time to transmit payload data to the ground station. The KOMPSAT-3 payload will generate higher data rate than KOMPSAT-2 due to its better ground sample distance capacity. High input data rate and limited output transmission data rate might lead excessive compression and degraded image quality. This paper presents a trade-off study about data storage capacity and compression parameters for estimated KOMPSAT-3 system.

  • PDF

THE ANALYSIS OF THE INFLUENCE OF THE COMPRESSION ON THE LOW EARTH ORBIT SATELLITE PAYLOAD SYSTEM

  • Shin, Sang-Youn;Choi, Myung-Jin;Heo, Haeng-Pal;Yong, Sang-Soon
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.232-235
    • /
    • 2008
  • The mission of the EO(electro-optical) based low earth orbit satellite is provision of the high-resolution images required for GIS(Geographical Information Systems) establishment and the applications for environmental, agriculture and ocean monitoring. AEISS(Advanced Earth Imaging Sensor System) which is the main payload on the satellite consists of EOS(electro-optical subsystem) and PDTS(Payload Data Transmission Sub-system). IDHU(Image Data Handling Unit) which is one of the major unit in PDTS is capable of compression, storage, encryption and encoding. In this paper, the payload system of the EO based satellite is briefly introduced and the influence of the compression on AEISS is analyzed.

  • PDF

High Embedding Capacity and Robust Audio Watermarking for Secure Transmission Using Tamper Detection

  • Kaur, Arashdeep;Dutta, Malay Kishore
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.133-145
    • /
    • 2018
  • Robustness, payload, and imperceptibility of audio watermarking algorithms are contradictory design issues with high-level security of the watermark. In this study, the major issue in achieving high payload along with adequate robustness against challenging signal-processing attacks is addressed. Moreover, a security code has been strategically used for secure transmission of data, providing tamper detection at the receiver end. The high watermark payload in this work has been achieved by using the complementary features of third-level detailed coefficients of discrete wavelet transform where the human auditory system is not sensitive to alterations in the audio signal. To counter the watermark loss under challenging attacks at high payload, Daubechies wavelets that have an orthogonal property and provide smoother frequencies have been used, which can protect the data from loss under signal-processing attacks. Experimental results indicate that the proposed algorithm has demonstrated adequate robustness against signal processing attacks at 4,884.1 bps. Among the evaluators, 87% have rated the proposed algorithm to be remarkable in terms of transparency.

Interface Test Method for Communications and Broadcasting Satellite Payload (통신방송위성 탑재체 정합시험 방법에 관한연구)

  • 김신홍;김인준;최완식;이성팔
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.291-294
    • /
    • 2002
  • This paper proposed interface test method for performance verification of communication and broadcasting satellite between communication and broadcasting satellite payload and EGSE(Electrical Ground Support Equipment). We need ground support equipment for test them to performance verification and conform interface function of payload. This paper define tile telemetry transfer method for control payload using GSE(Ground Support Equipment) and receive telemetry data collected from GSE through bus simulator

  • PDF

Satellite Software Design and Implementation for AIS Payload Operation (AIS 탑재체 운영을 위한 위성탑재소프트웨어 설계 및 구현)

  • Jeong, Jae-Yeop;Choi, Jong-Wook;Yoo, Bum-Soo;Lew, Je-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.92-99
    • /
    • 2016
  • AIS(Automatic Identification System) is an vessel traffic management system which exchanges vessel data with other nearby ships, AIS base stations using VHF band. A domestic AIS base station is located along coast lines or island. So it is difficult to collect vessel data from the ocean. To solve this problem, we adopted AIS payload on the low earth orbit satellite. The AIS payload on the satellite is interfaced with OBC(On-Board Computer) via UART and the FSW(Satellite Flight Software) manages it. The FSW have to receive AIS command from ground station and forward to AIS payload. Similarly FSW have to receive response, OBP, OGP data from AIS payload and it is downlink to the ground station. So in this paper we describe the FSW design & implementation for AIS payload.

(Design and Implementation of RTP Security Control Protocol for Protecting Multimedia Information) (멀티미디어 정보 보호를 위한 RTP 보안 제어 프로토콜 설계 및 구현)

  • 홍종준
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.9
    • /
    • pp.1223-1234
    • /
    • 2002
  • RTP payload must be encrypted for providing commercial VOD service or private video conference over the Internet. Encryption/decryption delay is minimized because there are constraints in transporting a multimedia data through the Internet. Therefore, encryption algorithm is changed with considering network traffic md load. During many users participate in the same multimedia service, an user who already left the service can receive and decrypt the RTP payload because of knowing the encryption key. In this paper, Security Control Protocol for RTP is designed and implemented for changing the encryption algorithm and the key.

  • PDF

SW Program Development of a Real-Time Flight Data Acquisition and Analysis System for EO/IR Pod

  • Kim, Songhyon;Cho, Donghyurn;Lee, Sanghyun;Kim, Jongbum;Choi, Taekyu;Lee, Seungha
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.42-49
    • /
    • 2021
  • To develop a high-resolution electro-optical/infrared (EO/IR) payload to be mounted on a high-speed and performance fighter aircraft in an external POD for acquiring daytime and nighttime image information on tactical targets, simulations, including flight environments and maneuvers, should be performed. Such simulations are pertinent to predicting the performance of several variables, such as aerodynamic force and inertia load acting on the payload. This paper describes the development of a flight data acquisition and analysis system based on flight simulation software (SW) for mission simulation of super-maneuverability fighter equipped with EO/IR payload. The effectiveness of the system is verified through comparison with actual flight data. The proposed flight data acquisition and analysis system based on FlightGear can be used as an M&S tool for system performance analysis in the development of the EO/IR payload.

Data Bus Compatibility Analysis of COMS Communication Payload (통신해양기상위성 통신탑재체 데이터 접속 적합성 분석)

  • Choi, Jae-Dong;Cho, Young-Ho;Kim, Eui-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1013_1014
    • /
    • 2009
  • In this paper, the electrical interfaces used in between COMS satellite bus and Ka-band communication payload are analyzed to verify the robustness of data bus. The purpose of the serial data bus of satellite is to allow serial data transfer between one bus controller or source equipment to several user terminals or slave equipments. A serial data bus in COMS satellite is mainly used for Channel Amplifier and Digital Control Unit of Ka-band Payload.

  • PDF