• 제목/요약/키워드: data mining, game data

검색결과 46건 처리시간 0.022초

Data Mining을 이용한 전략시뮬레이션 게임 데이터 분석 (A Study of Analyzing Realtime Strategy Game Data using Data Mining)

  • 용혜련;김도진;황현석
    • 한국게임학회 논문지
    • /
    • 제15권4호
    • /
    • pp.59-68
    • /
    • 2015
  • 정보통신기술의 발달로 빅데이터 분석을 통해 사람들 일상의 기록과 잠재적 요구까지 통찰할 수 있게 되었으며, 우리의 일상 속에서 방대한 정보를 실시간으로 도출하고 있다. 여러 산업이나 기업에서 이미 빅데이터와 결합시켜 비즈니스 등 다양한 분야에 활용하고 있지만 게임 산업에서의 빅데이터 활용은 아직까지 미흡한 실정이다. 이에 본 연구에서는 데이터 마이닝을 기법을 적용하여 전략시뮬레이션 게임 데이터를 분석하였다. 전략시뮬레이션 게임 데이터를 Decision Tree, Random Forest, Multi-class SVM, Linear Regression 분석 기법을 적용하여 게임 유저의 게임수준에 영향을 미치는 요인을 분석하였다. 게임수준을 예측하는데 있어 가장 우수한 성능을 보인 기법과 변수들을 도출하여 게임 디자인과 사용성을 증대시키기 위한 제안을 하고자 한다.

텍스트마이닝과 워드 클라우드를 활용한 VR 게임 트렌드 분석 -스팀(steam) 리뷰 데이터를 중심으로- (Analysis of VR Game Trends using Text Mining and Word Cloud -Focusing on STEAM review data-)

  • 나지영
    • 한국게임학회 논문지
    • /
    • 제22권1호
    • /
    • pp.87-98
    • /
    • 2022
  • 4차 산업혁명 관련 기술의 발전과 비대면 서비스 수요 증가로 VR 게임이 주목받고 있다. 본 연구는 VR 게임의 리뷰 데이터를 온라인 게임 플랫폼 스팀(STEAM)에서 수집하고 텍스트 마이닝과 워드 클라우드 분석을 적용해 시대별 트렌드를 분석했다. 연구 결과, 프레즌스와 FPS는 시기와 상관 없이 VR 게임의 특징으로 나타났고, 2016~2017년은 체험과 지각된 비용, 2018~2019년은 FPS와 리듬게임의 수요 증가, 2020~2021년은 스토리와 몰입감이 주요 트렌드로 나타났다. 본 연구는 VR 게임 사용자들이 관심을 보이는 키워드를 시기별로 파악해 VR게임 저변 확대에 기여하고자 한다.

Big Data Analysis of the Women Who Score Goal Sports Entertainment Program: Focusing on Text Mining and Semantic Network Analysis.

  • Hyun-Myung, Kim;Kyung-Won, Byun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권1호
    • /
    • pp.222-230
    • /
    • 2023
  • The purpose of this study is to provide basic data on sports entertainment programs by collecting data on unstructured data generated by Naver and Google for SBS entertainment program 'Women Who Score Goal', which began regular broadcast in June 2021, and analyzing public perceptions through data mining, semantic matrix, and CONCOR analysis. Data collection was conducted using Textom, and 27,911 cases of data accumulated for 16 months from June 16, 2021 to October 15, 2022. For the collected data, 80 key keywords related to 'Kick a Goal' were derived through simple frequency and TF-IDF analysis through data mining. Semantic network analysis was conducted to analyze the relationship between the top 80 keywords analyzed through this process. The centrality was derived through the UCINET 6.0 program using NetDraw of UCINET 6.0, understanding the characteristics of the network, and visualizing the connection relationship between keywords to express it clearly. CONCOR analysis was conducted to derive a cluster of words with similar characteristics based on the semantic network. As a result of the analysis, it was analyzed as a 'program' cluster related to the broadcast content of 'Kick a Goal' and a 'Soccer' cluster, a sports event of 'Kick a Goal'. In addition to the scenes about the game of the cast, it was analyzed as an 'Everyday Life' cluster about training and daily life, and a cluster about 'Broadcast Manipulation' that disappointed viewers with manipulation of the game content.

텍스트마이닝과 네트워크 분석을 적용한 VR 게임 사용자의 관심 요소 연구 - STEAM 사용자 리뷰 데이터를 중심으로 - (A study on the Elements of Interest for VR Game Users Using Text Mining and Text Network Analysis - Focused on STEAM User Review Data -)

  • 위민영;나지영;박영일
    • 한국게임학회 논문지
    • /
    • 제18권6호
    • /
    • pp.69-82
    • /
    • 2018
  • 최근 들어 VR 산업의 성장을 위한 양질의 VR 콘텐츠에 대한 필요성이 꾸준히 제기되고 있다. 이에 본 연구는 VR 콘텐츠 중에서 가장 큰 주목을 받고 있는 VR 게임의 사용자의 관심요소에 대해 연구하였다. 연구 수행을 위해 스팀(STEAM)의 사용자 리뷰 데이터를 활용하였고 리뷰 데이터에 텍스트마이닝과 네트워크 분석을 적용한 결과 VR 게임 사용자의 관심요소는 '현존감', '1인칭 시점 게임', '청각적 요소', '상호작용' 으로 확인되었다. 본 연구는 양질의 VR 게임 개발을 위한 사용자 관점의 연구를 수행하고 사용자 관점의 연구를 리뷰을 통해 시도한 초기 연구라는 것에 대해 그 의의가 있다.

A Realtime Analytical System of Football Game

  • Min, Dae-kee
    • Communications for Statistical Applications and Methods
    • /
    • 제8권2호
    • /
    • pp.557-564
    • /
    • 2001
  • The objective of he study is to record the real conditions along with the soccer ball that is, each player's ball keeping time, the number football keeping, accuracy of passing to other player, direction, etc., on a real-time basis, measure them in numbers and get necessary analyzed output as much as one needs. The study consists of the following stages: (1) Record the data by drawing through Visual Interface on a real-time basis; (2) Graphic windows to display the recorded data item by item in graphic; (3) Form windows to display the individual or team scores anytime when needed; (4) Windows to display the analyzed data in visualized form. The effect of the study is threefold: (1) It inputs all the game-related data on a real-time basis, which was impossible before and shows analyzed contents during the game enabling each tea manager o use; (2) In cse of TV broadcasting or newspaper articles, it explains objectively the situations of he game to the TV viewers or readers; (3) After the game, it provides importance information on each team's playing ability and individual player's technical improvement through data analysis.

  • PDF

도서 정보 및 본문 텍스트 통합 마이닝 기반 사용자 맞춤형 도서 큐레이션 시스템 (Personalized Book Curation System based on Integrated Mining of Book Details and Body Texts)

  • 안희정;김기원;김승훈
    • Journal of Information Technology Applications and Management
    • /
    • 제24권1호
    • /
    • pp.33-43
    • /
    • 2017
  • The content curation service through big data analysis is receiving great attention in various content fields, such as film, game, music, and book. This service recommends personalized contents to the corresponding user based on user's preferences. The existing book curation systems recommended books to users by using bibliographic citation, user profile or user log data. However, these systems are difficult to recommend books related to character names or spatio-temporal information in text contents. Therefore, in this paper, we suggest a personalized book curation system based on integrated mining of a book. The proposed system consists of mining system, recommendation system, and visualization system. The mining system analyzes book text, user information or profile, and SNS data. The recommendation system recommends personalized books for users based on the analysed data in the mining system. This system can recommend related books using based on book keywords even if there is no user information like new customer. The visualization system visualizes book bibliographic information, mining data such as keyword, characters, character relations, and book recommendation results. In addition, this paper also includes the design and implementation of the proposed mining and recommendation module in the system. The proposed system is expected to broaden users' selection of books and encourage balanced consumption of book contents.

텍스트마이닝을 활용한 사용자 요구사항 우선순위 도출 방법론 : 온라인 게임을 중심으로 (Analysis of User Requirements Prioritization Using Text Mining : Focused on Online Game)

  • 정미연;허선우;백동현
    • 산업경영시스템학회지
    • /
    • 제43권3호
    • /
    • pp.112-121
    • /
    • 2020
  • Recently, as the internet usage is increasing, accordingly generated text data is also increasing. Because this text data on the internet includes users' comments, the text data on the Internet can help you get users' opinion more efficiently and effectively. The topic of text mining has been actively studied recently, but it primarily focuses on either the content analysis or various improving techniques mostly for the performance of target mining algorithms. The objective of this study is to propose a novel method of analyzing the user's requirements by utilizing the text-mining technique. To complement the existing survey techniques, this study seeks to present priorities together with efficient extraction of customer requirements from the text data. This study seeks to identify users' requirements, derive the priorities of requirements, and identify the detailed causes of high-priority requirements. The implications of this study are as follows. First, this study tried to overcome the limitations of traditional investigations such as surveys and VOCs through text mining of online text data. Second, decision makers can derive users' requirements and prioritize without having to analyze numerous text data manually. Third, user priorities can be derived on a quantitative basis.

Data Mining Approach to Predicting Serial Publication Periods and Mobile Gamification Likelihood for Webtoon Contents

  • Jang, Hyun Seok;Lee, Kun Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권4호
    • /
    • pp.17-24
    • /
    • 2018
  • This paper proposes data mining models relevant to the serial publication periods and mobile gamification likelihood of webtoon contents which were either serialized or completed in platform. The size of the cartoon industry including webtoon takes merely 1% of the total entertainment contents industry in Korea. However, the significance of webtoon business is rapidly growing because its intellectual property can be easily used as an effective OSMU (One Source Multi-Use) vehicle for multiple types of contents such as movie, drama, game, and character-related merchandising. We suggested a set of data mining classifiers that are deemed suitable to provide prediction models for serial publication periods and mobile gamification likelihood for the sake of webtoon contents. As a result, the balanced accuracies are respectively recorded as 85.0% and 59.0%, from the two models.

AOS 장르 게임의 승패 예측 모형의 설계와 활용 (Design and Application of a Winning Forecast Model of the AOS Genre Game)

  • 구지민;유견아
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권1호
    • /
    • pp.37-44
    • /
    • 2017
  • AOS(Aeon of Strife)장르의 게임들은 단순히 즐기는 컴퓨터 게임이 아닌 대표적인 e스포츠 종목으로 자리매김하고 있으며 전문성을 필요로 하는 스포츠의 특성상, 게임 플레이 패턴 및 시즌 별 캐릭터 선택 등 게임 운영에 필요한 통계 분석의 중요성이 증가하고 있다. 본 논문에서는 대표적인 AOS 게임 중의 하나인 리그오브레전드의 게임 데이터를 이용해 데이터 마이닝 기법을 이용한 게임의 전략적 분석을 실시한다. 통계적 승률 예측 기법인 로지스틱 회귀분석과 판별 분석 및 인공신경망을 이용하여 게임의 승패 예측 모형을 설계하고 실험한다. 게임 데이터 분석 결과는 확률을 표시한 그래프로 표현되어 게임 플레이를 돕기 위해 개발된 시각적 도구에 이용한다. 승패 예측 모형의 실험 결과, 평균적으로 95%의 높은 분류율을 보이고 시각화 도구를 통해 게임 플레이의 다양한 전략 수립에 이용됨을 보인다.

Chatting Pattern Based Game BOT Detection: Do They Talk Like Us?

  • Kang, Ah Reum;Kim, Huy Kang;Woo, Jiyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권11호
    • /
    • pp.2866-2879
    • /
    • 2012
  • Among the various security threats in online games, the use of game bots is the most serious problem. Previous studies on game bot detection have proposed many methods to find out discriminable behaviors of bots from humans based on the fact that a bot's playing pattern is different from that of a human. In this paper, we look at the chatting data that reflects gamers' communication patterns and propose a communication pattern analysis framework for online game bot detection. In massive multi-user online role playing games (MMORPGs), game bots use chatting message in a different way from normal users. We derive four features; a network feature, a descriptive feature, a diversity feature and a text feature. To measure the diversity of communication patterns, we propose lightly summarized indices, which are computationally inexpensive and intuitive. For text features, we derive lexical, syntactic and semantic features from chatting contents using text mining techniques. To build the learning model for game bot detection, we test and compare three classification models: the random forest, logistic regression and lazy learning. We apply the proposed framework to AION operated by NCsoft, a leading online game company in Korea. As a result of our experiments, we found that the random forest outperforms the logistic regression and lazy learning. The model that employs the entire feature sets gives the highest performance with a precision value of 0.893 and a recall value of 0.965.