• Title/Summary/Keyword: data generation model

Search Result 1,695, Processing Time 0.033 seconds

Conditional Variational Autoencoder-based Generative Model for Gene Expression Data Augmentation (유전자 발현량 데이터 증대를 위한 Conditional VAE 기반 생성 모델)

  • Hyunsu Bong;Minsik Oh
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.275-284
    • /
    • 2023
  • Gene expression data can be utilized in various studies, including the prediction of disease prognosis. However, there are challenges associated with collecting enough data due to cost constraints. In this paper, we propose a gene expression data generation model based on Conditional Variational Autoencoder. Our results demonstrate that the proposed model generates synthetic data with superior quality compared to two other state-of-the-art models for gene expression data generation, namely the Wasserstein Generative Adversarial Network with Gradient Penalty based model and the structured data generation models CTGAN and TVAE.

The Development of the Predict Model for Solar Power Generation based on Current Temperature Data in Restricted Circumstances (제한적인 환경에서 현재 기온 데이터에 기반한 태양광 발전 예측 모델 개발)

  • Lee, Hyunjin
    • Journal of Digital Contents Society
    • /
    • v.17 no.3
    • /
    • pp.157-164
    • /
    • 2016
  • Solar power generation influenced by the weather. Using the weather forecast information, it is possible to predict the short-term solar power generation in the future. However, in limited circumstances such as islands or mountains, it can not be use weather forecast information by the disconnection of the network, it is impossible to use solar power generation prediction model using weather forecast. Therefore, in this paper, we propose a system that can predict the short-term solar power generation by using the information that can be collected by the system itself. We developed a short-term prediction model using the prior information of temperature and power generation amount to improve the accuracy of the prediction. We showed the usefulness of proposed prediction model by applying to actual solar power generation data.

Registration-free 3D Point Cloud Data Acquisition Technique for as-is BIM Generation Using Rotating Flat Mirrors

  • Li, Fangxin;Kim, Min-Koo;Li, Heng
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.3-12
    • /
    • 2020
  • Nowadays, as-is BIM generation has been popularly adopted in the architecture, engineering, construction and facility management (AEC/FM) industries. In order to generate a 3D as-is BIM of a structural component, current methods require a registration process that merges different sets of point cloud data obtained from multiple locations, which is time-consuming and registration error-prone. To tackle this limitation, this study proposes a registration-free 3D point cloud data acquisition technique for as-is BIM generation. In this study, small-size mirrors that rotate in both horizontal and vertical direction are used to enable the registration-free data acquisition technique. First, a geometric model that defines the relationship among the mirrors, the laser scanner and the target component is developed. Second, determinations of optimal laser scanner location and mirror location are performed based on the developed geometrical model. To validate the proposed registration-free as-is BIM generation technique, simulation tests are conducted on key construction components including a PC slab and a structural wall. The result demonstrates that the registration-free point cloud data acquisition technique can be applicable in various construction elements including PC elements and structural components for as-is BIM generation.

  • PDF

Prediction Model of Aerosol Generation for Cutting Fluid in Turning (선삭에서 절삭유 입자 발생 예측모델)

  • 박성호;오명석;고태조;김희술
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.69-76
    • /
    • 2004
  • This paper presents a prediction model for the aerosol generation of cutting fluid in turning process. Experimental studies have been carried out in order to identify the characteristics of aerosol generation in non-cutting and cutting cases. The indices of aerosol generation was mass concentration comparable to number generation, which is generally used fur environment criterion. Based on the experimental data, empirical model for predicting aerosol mass concentration of cutting fluid could be obtained by a statistical analysis. This relation shows good agreement with experimental data.

Generation of 3D STEP Model from 2D Drawings Using Feature Definition of Ship Structure (선체구조 특징형상 정의에 의한 2D 도면에서 3D STEP 선체 모델의 생성)

  • 황호진;한순흥;김용대
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.2
    • /
    • pp.122-132
    • /
    • 2003
  • STEP AP218 has a standard schema to represent the structural model of a midship section. While it helps to exchange ship structural models among heterogeneous automation systems, most shipyards and classification societies still exchange information using 2D paper drawings. We propose a feature parameter input method to generate a 3D STEP model of a ship structure from 2D drawings. We have analyzed the ship structure information contained in 2D drawings and have defined a data model to express the contents of the drawing. We also developed a QUI for the feature parameter input. To translate 2D information extracted from the drawing into a STEP AP2l8 model, we have developed a shape generation library, and generated the 3D ship model through this library. The generated 3D STEP model of a ship structure can be used to exchange information between design departments in a shipyard as well as between classification societies and shipyards.

Prediction of Wind Power Generation for Calculation of ESS Capacity using Multi-Layer Perceptron (ESS 용량 산정을 위한 다층 퍼셉트론을 이용한 풍력 발전량 예측)

  • Choi, Jeong-Gon;Choi, Hyo-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.319-328
    • /
    • 2021
  • In this paper, we perform prediction of amount of electric power plant for complex of wind plant using multi-layer perceptron in order to calculate exact calculation of capacity of ESS to maximize profit through generation and to minimize generation cost of wind generation. We acquire wind speed, direction of wind and air density as variables to predict the amount of generation of wind power. Then, we merge and normalize there variables. To train model, we divide merged variables into data as train and test data with ratio of 70% versus 30%. Then we train model by using training data, and we alsouate the prediction performance of model by using test data. Finally, we present the result of prediction in amount of wind power.

Approximation of a compound surface to polyhedral model (복합곡면의 다면체 곡면 근사)

  • 김영일;전차수;조규갑
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.100-103
    • /
    • 1996
  • Presented in this study is an algorithmic procedure to obtain polyhedral model from a compound surface. The compound surface in this study denotes a collection of trimmed surfaces without topological relations. The procedure consists of two main modules: CAD data interface, and surface conversion to polyhedral model. The interface module gets geometric information from CAD databases, and makes topological information by scanning the geometric information. We are investigating CATIA system as a data source system. In the surface conversion module, a shell(compound surface with topological information) is approximated to a triangular-faceted polyhedral surface model through node sampling and triangulation steps. The obtained polyhedral model should obey the vertex-to-vertex rule and meet tolerance requirements. Since the polyhedral model has a simple data structure and geometry processing for it is very efficient and robust, the polyhedral model can be used in various applications, such as surface rendering in computer graphics, FEM model for engineering analysis, CAPP for surface machining, data generation for SLA, and NC tool path generation.

  • PDF

Non-linear Regression Model Between Solar Irradiation and PV Power Generation by Using Gompertz Curve (Gompertz 곡선을 이용한 비선형 일사량-태양광 발전량 회귀 모델)

  • Kim, Boyoung;Alba, Vilanova Cortezon;Kim, Chang Ki;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Hyung-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.113-125
    • /
    • 2019
  • With the opening of the small power brokerage business market in December 2018, the small power trading market has started in Korea. Operators must submit the day-ahead estimates of power output and receive incentives based on its accuracy. Therefore, the accuracy of power generation forecasts is directly affects profits of the operators. The forecasting process for power generation can be divided into two procedure. The first is to forecast solar irradiation and the second is to transform forecasted solar irradiation into power generation. There are two methods for transformation. One is to simulate with physical model, and another is to use regression model. In this study, we found the best-fit regression model by analyzing hourly data of PV output and solar irradiation data during three years for 242 PV plants in Korea. The best model was not a linear model, but a sigmoidal model and specifically a Gompertz model. The combined linear regression and Gompertz curve was proposed because a the curve has non-zero y-intercept. As the result, R2 and RMSE between observed data and the curve was significantly reduced.

CNN-LSTM based Wind Power Prediction System to Improve Accuracy (정확도 향상을 위한 CNN-LSTM 기반 풍력발전 예측 시스템)

  • Park, Rae-Jin;Kang, Sungwoo;Lee, Jaehyeong;Jung, Seungmin
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.18-25
    • /
    • 2022
  • In this study, we propose a wind power generation prediction system that applies machine learning and data mining to predict wind power generation. This system increases the utilization rate of new and renewable energy sources. For time-series data, the data set was established by measuring wind speed, wind generation, and environmental factors influencing the wind speed. The data set was pre-processed so that it could be applied appropriately to the model. The prediction system applied the CNN (Convolutional Neural Network) to the data mining process and then used the LSTM (Long Short-Term Memory) to learn and make predictions. The preciseness of the proposed system is verified by comparing the prediction data with the actual data, according to the presence or absence of data mining in the model of the prediction system.

3D geometric model generation based on a stereo vision system using random pattern projection (랜덤 패턴 투영을 이용한 스테레오 비전 시스템 기반 3차원 기하모델 생성)

  • Na, Sang-Wook;Son, Jeong-Soo;Park, Hyung-Jun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.848-853
    • /
    • 2005
  • 3D geometric modeling of an object of interest has been intensively investigated in many fields including CAD/CAM and computer graphics. Traditionally, CAD and geometric modeling tools are widely used to create geometric models that have nearly the same shape of 3D real objects or satisfy designers intent. Recently, with the help of the reverse engineering (RE) technology, we can easily acquire 3D point data from the objects and create 3D geometric models that perfectly fit the scanned data more easily and fast. In this paper, we present 3D geometric model generation based on a stereo vision system (SVS) using random pattern projection. A triangular mesh is considered as the resulting geometric model. In order to obtain reasonable results with the SVS-based geometric model generation, we deal with many steps including camera calibration, stereo matching, scanning from multiple views, noise handling, registration, and triangular mesh generation. To acquire reliable stere matching, we project random patterns onto the object. With experiments using various random patterns, we propose several tips helpful for the quality of the results. Some examples are given to show their usefulness.

  • PDF