• 제목/요약/키워드: data fusion rule

검색결과 36건 처리시간 0.031초

A Study of Association Rule Mining by Clustering through Data Fusion

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권4호
    • /
    • pp.927-935
    • /
    • 2007
  • Currently, Gyeongnam province is executing the social index survey every year to the provincials. But, this survey has the limit of the analysis as execution of the different survey per 3 year cycles. The solution of this problem is data fusion. Data fusion is the process of combining multiple data in order to provide information of tactical value to the user. But, data fusion doesn#t mean the ultimate result. Therefore, efficient analysis for the data fusion is also important. In this study, we present data fusion method of statistical survey data. Also, we suggest application methodology of association rule mining by clustering through data fusion of statistical survey data.

  • PDF

Association Rule Mining by Environmental Data Fusion

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권2호
    • /
    • pp.279-287
    • /
    • 2007
  • Data fusion is the process of combining multiple data in order to produce information of tactical value to the user. Data fusion is generally defined as the use of techniques that combine data from multiple sources and gather that information in order to achieve inferences. Data fusion is also called data combination or data matching. Data fusion is divided in five branch types which are exact matching, judgemental matching, probability matching, statistical matching, and data linking. In this paper, we develop was macro program for statistical matching which is one of five branch types for data fusion. And then we apply data fusion and association rule techniques to environmental data.

  • PDF

의사결정 규칙을 이용한 데이터 통합에 관한 연구 (A Study on the Data Fusion Method using Decision Rule for Data Enrichment)

  • 김순영;정성석
    • 응용통계연구
    • /
    • 제19권2호
    • /
    • pp.291-303
    • /
    • 2006
  • 대용량의 데이터로부터 의미있는 지식을 찾는 과정에서 데이터의 질은 무엇보다도 중요하다. 본 연구에서는 데이터의 충실도를 높이기 위한 방법으로 여러 경로로부터 수집된 데이터의 정보를 활용하기 위해 데이터 마이닝 알고리즘인 의사결정 규칙을 이용한 데이터 통합 기법을 제안하고, 실제 데이터를 이용하여 모의실험을 통해 제안된 알고리즘의 효율성을 비교하였다. 실험결과 제안된 알고리즘이 데이터 통합의 성능을 향상시킴을 알 수 있었다.

A New Method of Remote Sensing Image Fusion Based on Modified Kohonen Networks

  • Shuhe, Zhao;Xiuwan, Chen;Junfeng, Chen;Yinghai, Ke
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1337-1339
    • /
    • 2003
  • In this article, a new remote sensing image fusion model based on modified Kohonen networks is given. And a new fusion rule based on modified voting rule was established. Select Shaoxing City as the study site, located at Zhejiang Province, P.R.China. The fusion experiment between Landsat TM data (30m) and IRS-C Pan data (5.8m) was performed using the given fusion method. The fusion results show that the new method can gain better result in apply ing to the lower hill area, and the whole classification accuracy was 10% higher than the basic Kohonen method. The confusion between the woodlands and the waterbodies was also diminished.

  • PDF

모바일과 의료서비스 간의 새로운 융합 가능성에 관한 연구 (A Study on the Possible New Fusion between Mobile and Healthcare Service)

  • 신용재;김진화;이재범
    • 한국IT서비스학회지
    • /
    • 제11권sup호
    • /
    • pp.27-39
    • /
    • 2012
  • As many applications are possible now in mobile environment with the trend of mobile convergence, diverse applications in healthcare industry are also possible in mobile devices. Though lots of researches on mobile and health services are introduced, they are limited to specific area or techniques. This study shows possible directions of fusion between mobile technologies and health services in the future using a data mining technique called association rule analysis. The data used in this study is collected from web pages containing key words related to mobile technologies and health services. The analysis shows that current cases of fusion between monitoring based telemedicine and patients. It also shows another case of fusion between mobile hospital and medical screen charts. These show that fusion between mobile technologies and health services already began in industry. Association rules are found between well-being, city, diet, and sleep. The association rules containing security and privacy, though their associations are not so strong, also show that security and privacy of patient information should be protected in the future. The results show that the fusion of mobile technologies and health services is expected to provide health services to more users and larger areas. It is also expected to create new diverse business models in the future.

Comparing Accuracy of Imputation Methods for Incomplete Categorical Data

  • Shin, Hyung-Won;Sohn, So-Young
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.237-242
    • /
    • 2003
  • Various kinds of estimation methods have been developed for imputation of categorical missing data. They include modal category method, logistic regression, and association rule. In this study, we propose two imputation methods (neural network fusion and voting fusion) that combine the results of individual imputation methods. A Monte-Carlo simulation is used to compare the performance of these methods. Five factors used to simulate the missing data are (1) true model for the data, (2) data size, (3) noise size (4) percentage of missing data, and (5) missing pattern. Overall, neural network fusion performed the best while voting fusion is better than the individual imputation methods, although it was inferior to the neural network fusion. Result of an additional real data analysis confirms the simulation result.

  • PDF

지능형 교통 시스템을 위한 인지무선 협력 스펙트럼 센싱의 성능 분석 (Performance Analysis of Cognitive Radio Cooperative Spectrum Sensing for Intelligent Transport System)

  • 김진영;백명기
    • 한국ITS학회 논문지
    • /
    • 제7권6호
    • /
    • pp.110-120
    • /
    • 2008
  • 인지무선(CR: Cognitive Radio) 기술은 최근의 스펙트럼 부족 문제 때문에 사용하지 않는 스펙트럼 대역을 효과적으로 사용하기 위해서 제안되었다. 인지무선 기술에서 스펙트럼 센싱 기술은 주요 이슈 중의 하나이고, 비면허 사용자는 1차 사용자에게 할당된 빈 스펙트럼 자원을 확인하고 활용할 수 있다. 본 논문에서는 협력 스펙트럼 센싱 기술을 지능형 교통시스템(ITS: Intelligent Transport system)에 적용하여 신호 검출의 성능을 분석한다. 그리고 협력 신호 검출을 위해서 OR-rule과 AND-rule을 사용하여 신호 검출의 성능과 신뢰성을 향상시킨다.

  • PDF

범주형 자료의 결측치 추정방법 성능 비교 (Comparing Accuracy of Imputation Methods for Categorical Incomplete Data)

  • 신형원;손소영
    • 응용통계연구
    • /
    • 제15권1호
    • /
    • pp.33-43
    • /
    • 2002
  • 범주형 데이터의 결측치 추정을 위하여 최빈 범주법, 로지스틱 회귀분석, 연관규칙과 같은 다양한 방법이 연구되어 왔다. 본 연구에서는 이러한 방법의 추정 값을 결합하는 신경망 융합과 투표융합 방법을 제안하고 이의 성능을 시뮬레이션을 이용하여 비교하였다. 실험에 사용된 데이터의 특성을 나타내는 인자로는 (1) 입출력 변수간의 연결함수, (2) 데이터의 크기, (3) 노이즈의 크기 (4) 결측치의 비율, (5) 결측발생 함수를 사용하였다. 분석결과는 다음과 같다. 데이터의 크기가 작고 결측 발생 비율이 높으면 최빈 범주법, 연관규칙, 신경망 융합의 성능이 높게 나타났으며 데이터의 크기가 작고 결측발생 확률이 결측이 안된 나머지 변수에 높은 의존관계가 있으면 로지스틱 회귀분석, 신경망 융합의 성능이 높게 나타났다. 데이터의 크기가 크고, 결측치의 비율이 낮으면서, 노이즈가 크고 결측발생 확률이 결측이 안된 나머지 변수에 높은 의존관계가 있으면 신경망 융합의 성능이 높게 나타났다.