• Title/Summary/Keyword: data analytics

Search Result 563, Processing Time 0.025 seconds

Integration of Cloud and Big Data Analytics for Future Smart Cities

  • Kang, Jungho;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1259-1264
    • /
    • 2019
  • Nowadays, cloud computing and big data analytics are at the center of many industries' concerns to take advantage of the potential benefits of building future smart cities. The integration of cloud computing and big data analytics is the main reason for massive adoption in many organizations, avoiding the potential complexities of on-premise big data systems. With these two technologies, the manufacturing industry, healthcare system, education, academe, etc. are developing rapidly, and they will offer various benefits to expand their domains. In this issue, we present a summary of 18 high-quality accepted articles following a rigorous review process in the field of cloud computing and big data analytics.

A Study on the Effect of Selection on Data Analytics by Auditor (감사인의 데이터 분석 기법 채택에 영향을 미치는 요인 연구)

  • Jung, Gwan Hoon;Lee, Jung Hoon;Kim, Da Som
    • Journal of Information Technology Applications and Management
    • /
    • v.22 no.1
    • /
    • pp.37-60
    • /
    • 2015
  • As the dependence on information systems in enterprises has grown dramatically, the importance of implementing information systems in audit has been increased as well. However, there is a lact of about utilization of information system for audit process. Thus, this study is to investigate the factors that effect auditor's adopting Data Analytics to audit work. Through literature research and focus group interview, we added two factors that affect the behavioral intention to UTAUT model. We have selected performance expectancy, effort expectancy, social influence, facilitating conditions, anxiety, task fit, behavioral intention as variables and verified hypotheses based on survey questionnaires from auditors. As a result, it was found that performance expectations, social influence, task fit influenced the behavior intention. In Addition, we analyzed adding two variables, IT-related work experience and type of auditor as moderate variable. This study has an implication for companies to motivate implementation as well as activation of Data Analytics technique.

Education Data and Analytics: A Review of the State of the Art (교육 데이터와 분석 기법: 사례 연구를 중심으로)

  • Kwon, YoungOk
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.73-81
    • /
    • 2019
  • With the increase of education data, there have been many studies on the application of various analytics to improve students' performance and educational environments over the past decade. This paper first introduces the cases of universities that successfully utilize the analysis results and, more specifically, examines which data and analytical techniques are used for each analysis purpose. Based on the findings, the limitations of the current analytics and the direction of future analysis are discussed.

  • PDF

Capturing Data from Untapped Sources using Apache Spark for Big Data Analytics (빅데이터 분석을 위해 아파치 스파크를 이용한 원시 데이터 소스에서 데이터 추출)

  • Nichie, Aaron;Koo, Heung-Seo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1277-1282
    • /
    • 2016
  • The term "Big Data" has been defined to encapsulate a broad spectrum of data sources and data formats. It is often described to be unstructured data due to its properties of variety in data formats. Even though the traditional methods of structuring data in rows and columns have been reinvented into column families, key-value or completely replaced with JSON documents in document-based databases, the fact still remains that data have to be reshaped to conform to certain structure in order to persistently store the data on disc. ETL processes are key in restructuring data. However, ETL processes incur additional processing overhead and also require that data sources are maintained in predefined formats. Consequently, data in certain formats are completely ignored because designing ETL processes to cater for all possible data formats is almost impossible. Potentially, these unconsidered data sources can provide useful insights when incorporated into big data analytics. In this project, using big data solution, Apache Spark, we tapped into other sources of data stored in their raw formats such as various text files, compressed files etc and incorporated the data with persistently stored enterprise data in MongoDB for overall data analytics using MongoDB Aggregation Framework and MapReduce. This significantly differs from the traditional ETL systems in the sense that it is compactible regardless of the data formats at source.

Creating Value for Education through Big Data Analysis Education Programs (빅데이터 분석 교육 프로그램을 통한 대학 교육 가치 창출)

  • Cho, Wooje;Yu, Mi rim
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.123-130
    • /
    • 2018
  • As the demand for analytics technologies in both industry and academia increases, the demand for analytics experts is also increasing. To meet this trend, universities have begun to develop new analytics curriculum and provide courses for training analytics experts. In this study, we surveyed curriculum of master's analytics programs of 9 Korean universities and 20 overseas universities. As a result of comparing the domestic university program with the overseas university programs, the average number of subjects per school program is more than that of the Korean university program, but it was found to be less in terms of diversity of subjects.

An Empirical Study on the Effects of Source Data Quality on the Usefulness and Utilization of Big Data Analytics Results (원천 데이터 품질이 빅데이터 분석결과의 유용성과 활용도에 미치는 영향)

  • Park, Sohyun;Lee, Kukhie;Lee, Ayeon
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.4
    • /
    • pp.197-214
    • /
    • 2017
  • This study sheds light on the source data quality in big data systems. Previous studies about big data success have called for future research and further examination of the quality factors and the importance of source data. This study extracted the quality factors of source data from the user's viewpoint and empirically tested the effects of source data quality on the usefulness and utilization of big data analytics results. Based on the previous researches and focus group evaluation, four quality factors have been established such as accuracy, completeness, timeliness and consistency. After setting up 11 hypotheses on how the quality of the source data contributes to the usefulness, utilization, and ongoing use of the big data analytics results, e-mail survey was conducted at a level of independent department using big data in domestic firms. The results of the hypothetical review identified the characteristics and impact of the source data quality in the big data systems and drew some meaningful findings about big data characteristics.

Key Themes for Multi-Stage Business Analytics Adoption in Organizations

  • Amit Kumar;Bala Krishnamoorthy;Divakar B Kamath
    • Asia pacific journal of information systems
    • /
    • v.30 no.2
    • /
    • pp.397-419
    • /
    • 2020
  • Business analytics is a management tool for achieving significant business performance improvements. Many organizations fail to or only partially achieve their business objectives and goals from business analytics. Business analytics adoption is a multi-stage complex activity consisting of evaluation, adoption, and assimilation stages. Several research papers have been published in the field of business analytics, but the research on multi-stage BA adoption is fewer in number. This study contributes to the scant literature on the multi-stage adoption model by identifying the critical themes for evaluation, adoption, and assimilation stages of business analytics. This study uses the thematic content analysis of peer-reviewed published academic papers as a research technique to explore the key themes of business analytics adoption. This study links the critical themes with the popular theoretical foundations: Resource-Based View (RBV), Dynamic Capabilities, Diffusion of Innovations, and Technology-Organizational-Environmental (TOE) framework. The study identifies twelve major factors categorized into three key themes: organizational characteristics, innovation characteristics, and environmental characteristics. The main organizational factors are top management support, organization data environment, centralized analytics structure, perceived cost, employee skills, and data-based decision making culture. The major innovation characteristics are perceived benefits, complexity, and compatibility, and information technology assets. The environmental factors influencing BA adoption stages are competition and industry pressure. A conceptual framework for the multi-stage BA adoption model is proposed in this study. The findings of this study can assist the practicing managers in developing a stage-wise operational strategy for business analytics adoption. Future research can also attempt to validate the conceptual model proposed in this study.

Empirical Comparison of the Effects of Online and Offline Recommendation Duration on Purchasing Decisions: Case of Korea Food E-commerce Company

  • Qinglong Li;Jaeho Jeong;Dongeon Kim;Xinzhe Li;Ilyoung Choi;Jaekyeong Kim
    • Asia pacific journal of information systems
    • /
    • v.34 no.1
    • /
    • pp.226-247
    • /
    • 2024
  • Most studies on recommender systems to evaluate recommendation performances focus on offline evaluation methods utilizing past customer transaction records. However, evaluating recommendation performance through real-world stimulation becomes challenging. Moreover, such methods cannot evaluate the duration of the recommendation effect. This study measures the personalized recommendation (stimulus) effect when the product recommendation to customers leads to actual purchases and evaluates the duration of the stimulus personalized recommendation effect leading to purchases. The results revealed a 4.58% improvement in recommendation performance in the online environment compared with that in the offline environment. Furthermore, there is little difference in recommendation performance in offline experiments by period, whereas the recommendation performance declines with time in online experiments.

Learning Analytics Framework on Metaverse

  • Sungtae LIM;Eunhee KIM;Hoseung BYUN
    • Educational Technology International
    • /
    • v.24 no.2
    • /
    • pp.295-329
    • /
    • 2023
  • The recent development of metaverse-related technology has led to efforts to overcome the limitations of time and space in education by creating a virtual educational environment. To make use of this platform efficiently, applying learning analytics has been proposed as an optimal instructional and learning decision support approach to address these issues by identifying specific rules and patterns generated from learning data, and providing a systematic framework as a guideline to instructors. To achieve this, we employed an inductive, bottom-up approach for framework modeling. During the modeling process, based on the activity system model, we specifically derived the fundamental components of the learning analytics framework centered on learning activities and their contexts. We developed a prototype of the framework through deduplication, categorization, and proceduralization from the components, and refined the learning analytics framework into a 7-stage framework suitable for application in the metaverse through 3 steps of Delphi surveys. Lastly, through a framework model evaluation consisting of seven items, we validated the metaverse learning analytics framework, ensuring its validity.