• Title/Summary/Keyword: dark matter

Search Result 260, Processing Time 0.032 seconds

e-Science Paradigm for Astroparticle Physics at KISTI

  • Cho, Kihyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.63-67
    • /
    • 2016
  • The Korea Institute of Science and Technology Information (KISTI) has been studying the e-Science paradigm. With its successful application to particle physics, we consider the application of the paradigm to astroparticle physics. The Standard Model of particle physics is still not considered perfect even though the Higgs boson has recently been discovered. Astrophysical evidence shows that dark matter exists in the universe, hinting at new physics beyond the Standard Model. Therefore, there are efforts to search for dark matter candidates using direct detection, indirect detection, and collider detection. There are also efforts to build theoretical models for dark matter. Current astroparticle physics involves big investments in theories and computing along with experiments. The complexity of such an area of research is explained within the framework of the e-Science paradigm. The idea of the e-Science paradigm is to unify experiment, theory, and computing. The purpose is to study astroparticle physics anytime and anywhere. In this paper, an example of the application of the paradigm to astrophysics is presented.

Comparison between the Pair Fractions of Dark Matter Halos and Galaxies in Cosmological Simulations

  • An, Sung-Ho;Kim, Juhan;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.69.1-69.1
    • /
    • 2016
  • We investigate the pair fractions of dark matter halos and galaxies in cosmological simulations. The cosmological simulations are performed by a tree-particle-mesh code GOTPM (Grid-of-Oct-Tree-Particle-Mesh) and the dark matter halos are identified by a halo finding algorithm PSB (Physically Self-Bound). The 'galaxy' pair fractions are obtained from galaxy catalogues of L-Galaxies semi-analytical galaxy formation runs in the Millennium database. We present and compare the pair fractions of the dark matter halos and galaxies as functions of redshifts, halo masses and ambient environments.

  • PDF

Origin of Dark-Energy and Accelerating Universe

  • Keum, Yong-Yeon
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.34.1-34.1
    • /
    • 2009
  • After SNIa and WMAP observations during the last decade, the discovery of the accelerated expansion of the universe is a major challenge to particle physics and cosmology. There are currently three candidates for the dark energy which results in this accelerated expansion: $\cdot$ a non-zero cosmological constant, $\cdot$ a dynamical cosmological constant (quintessence scalar field), $\cdot$ modifications of Einstein's theory of gravity. The scalar field model like quintessence is a simple model with time-dependent w, which is generally larger than -w1. Because the different w lead to a different expansion history of the universe, the geometrical measurements of cosmic expansion through observations of SNIa, CMB and baryon acoustic oscillations (BAO) can give us tight constraints on w. One of the interesting ways to study the scalar field dark-energy models is to investigate the coupling between the dark energy and the other matter fields. In fact, a number of models which realize the interaction between dark energy and dark matter, or even visible matter, have been proposed so far. Observations of the effects of these interactions will offer an unique opportunity to detect a cosmological scalar field. In this talk, after briefly reviewing the main idea of the three possible candidates for dark energy and their cosmological phenomena, we discuss the interactinng dark-energy model, paying particular attention to the interacting mechanism between dark energy with a hot dark matter (neutrinos). In this so-called mass-varying neutrino (MVN) model, we calculate explicitly the cosmic microwave background (CMB) radiation and large-scale structure (LSS) within cosmological perturbation theory. The evolution of the mass of neutrinos is determined by the quintessence scalar field, which is responsible for the cosmic acceleration today.

  • PDF

Using the Topology of Large Scale Structure for Cosmological Parameter Estimation

  • Appleby, Stephen
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.41.2-41.2
    • /
    • 2018
  • The Minkowski Functionals of the matter densityeld, as traced by galaxies, contain information regarding the nature of dark energy and the fraction of dark matter in the Universe. In particular, the genus is a statistic that provides a clean measurement of the shape of the linear matter power spectrum. As the genus is a topological quantity, it is insensitive to galaxy bias and gravitational collapse. Furthermore, as it traces the linear matter power spectrum, it is a conserved quantity with redshift. Hence the genus amplitude is a standard population that can be used to test the distance-redshift relation. In this talk, I show how we can extract the genus from galaxy catalogs, and how we can use its properties to constrain the equation of state of dark energy and the energy content of the Universe.

  • PDF

On the Influence of the Moment of Inertia of Gas on the Galactic Rotation Curves

  • Portnov, Yuriy A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.99-108
    • /
    • 2022
  • There are two models that explain the rotation curves of galaxies: dark matter, which gives the missing contribution to the gravitational potential of the standard theory of gravity, and modified theories of gravity, according to which the gravitational potential is created by ordinary visible mass. Both models have some disadvantages. The article offers a new look at the problem of galactic rotation curves. The author suggests that the moment of inertia creates an additional gravitational potential along with the mass. The numerical simulation carried out on the example of fourteen galaxies confirms the validity of such an assumption. This approach makes it possible to explain the constancy of gas velocities outside the galactic disk without involving the hypothesis of the existence of dark matter. At the same time, the proposed approach lacks the disadvantages of modified theories of gravity, where the gravitational potential is created only by the mass of visible matter.

ON THE PHYSICAL BASIS OF THE TULLY-FISHER RELATION

  • RHEE MYUNG-HYUN
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.15-39
    • /
    • 2004
  • We analyse the results of mass models derived from the HI rotation! curves of spiral galaxies and find that the slope of the luminous mass-circular velocity relation is close to 4. The luminous mass-circular velocity relation with a slope of about 4 can be explained by an anti-correlation between the mass surface density of luminous matter and the mass ratio of the dark and luminous components. We also argue that the conspiracy between luminous and dark matter exists in a local sense (producing a flat or smooth rotation curve) and in a global sense (affecting the mass ratio of the dark and luminous matter), maintaining the luminous mass-circular velocity relation with a slope of about 4. We therefore propose that the physical basis of the Tully-Fisher relation lies in the luminous mass-circular velocity relation. While the slope of the luminous mass-circular velocity relation is fairly well defined regardless of the dark matter contribution, the zero-point of the relation is still to be determined. The determination of the slope of the Tully-Fisher relation needs one more step: the mean trend of the luminosity-luminous mass relation determines the overall shape (slope) of the Tully-Fisher relation. The key parameter needed to determine the zero-point of the luminous mass-circular velocity relation and the slope of the Tully-Fisher relation obviously is the luminous mass-to-light ratio.

Towards a Better Understanding of Structure Formation: Galaxies and Dark Matter

  • Hwang, Ho Seong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.35.4-35.4
    • /
    • 2019
  • Understanding the interplay between galaxies and dark matter in the universe is one of key challenges in modern astrophysics. This provides an important test of structure formation scenarios and cosmological models. I discuss three aspects of this test: (1) comparing the matter distribution from galaxy redshift surveys with that from weak-lensing surveys, (2) statistical comparison of large-scale structures between observations and cosmological simulations, and (3) multi-wavelength study of galaxies. These tests underscore the importance of combining photometric and spectroscopic surveys in observations along with cosmological simulations for exploring and understanding the structure formation.

  • PDF

Distribution of Baryonic Matter in Dark Matter Halos: Effect of Dynamical Friction

  • Bae, Yeong-Bok;Lee, Hyung-Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.47.1-47.1
    • /
    • 2011
  • We studied the evolution of the two mass components system with NFW initial density distribution by direct integration of the Fokker-Planck equations. The low mass component is regarded the dark matter particles while the high mass component is assumed to be conglomerates of baryonic matter in order to depict the 'stars'. While the true mass ratio between these two types of particles should be extremely large, our adopted mass ratio is about 1000 beyond which the dynamical evolution and density distribution tend to converge. Since the dynamical evolution is dominated by the dynamical friction, the high mass component slowly moves toward the central part, and eventually undergoes the core collapse. The system reaches the core-collapse at about $7.1{\times}10^{-3}$ $t_{fh}$ in NFW models, where $t_{fh}$is the dynamical friction time at half-mass radius. The distribution of the high mass component is well fitted by the Sersic profiles or modified Hubble profile when the mass segregation is established. From these results, the surface brightness of elliptical galaxies may be explained by the high mass component experiencing dynamical friction by the dark matter particles. In order for the mass segregation to be effective within Hubble time, the mass of the luminous component should be greater than $10^5M_{\bigodot}$.

  • PDF

The Effects of Ram Pressure on Dwarf Galaxies

  • Smith, Rory;Duc, Pierre-Alain;Candlish, Graeme;Fellhauer, Michael;Sheen, Yun-Kyeong;Gibson, Brad
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.48.3-48.3
    • /
    • 2015
  • Using numerical simulations, we study the effects of ram pressure stripping on dwarf galaxies. It is commonly assumed that ram pressure only affects the gas component of a galaxy. We find that it actually can affect the dynamics of the stars too, and even the dark matter surrounding the disk - an effect dubbed 'ram pressure drag'. We study the effects of ram pressure drag on tidal dwarf galaxies, and find the response is very strong. Tidal dwarfs may be entirely destroyed by gas removal, and their stellar dynamics may appear heavily dark matter dominated where no dark matter exists. We discuss the consequences for tidal dwarf evolution, tidal streams, and disk galaxy evolution in general.

  • PDF