• Title/Summary/Keyword: dark energy

Search Result 312, Processing Time 0.033 seconds

A Study on Real-Time Defect Detection Using Ultrasound Excited Thermography (초음파 서모그라피를 이용한 실시간 결함 검출에 대한 연구)

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Jung, Hyun-Kyu;Kim, Seung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.4
    • /
    • pp.211-219
    • /
    • 2006
  • The UET(ultrasound excited thermography) for the ,eat-time diagnostics of the object employs an infrared camera to image defects of the surface and subsurface which are locally heated using high-frequency putted ultrasonic excitation. The dissipation of high-power ultrasonic energy around the feces of the defects causes an increase In temperature. The defect's image appears as a hot spot (bright IR source) within a dark background field. The UET for nondestructive diagnostic and evaluation is based on the image analysis of the hot spot as a local response to ultrasonic excited heat deposition. In this paper the applicability of VET for fast imaging of defect is described. The ultrasonic energy is injected into the sample through a transducer in the vertical and horizontal directions respectively. The voltage applied to the transducer is measured by digital oscilloscope, and the waveform are compared. Measurements were performed on four kinds of materials: SUS fatigue crack specimen(thickness 14mm), PCB plate(1.8 mm), CFRP plate(3 mm) and Inconel 600 plate (1 mm). A high power ultrasonic energy with pulse durations of 250ms Is injected into the samples in the horizontal and vertical directions respectively The obtained experimental result reveals that the dissipation loss of the ultrasonic energy In the vertical injection is less than that in the horizontal direction. In the cafe or PCB, CFRP, the size of hot spot in the vortical injection if larger than that in horizontal direction. Duration time of the hot spot in the vertical direction is three times as long as that in the horizontal direction. In the case of Inconel 600 plate and SUS sample, the hot spot in the horizontal injection was detected faster than that in the vertical direction

Optimal Display Method Considering the Display Element and Color of Fire Shutter Door (방화셔터 출입구의 표시 요소 및 색상을 고려한 최적 표시방법)

  • Son, Jong-Yeong;Hong, Won-Hwa;Bae, Young-Hoon
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.67-72
    • /
    • 2018
  • A fire shutter is installed to prevent the movement of fire or smoke when a fire occurs inside a building. Fire shutters have access doors for passengers. On the other hand, the present fire shutter door display regulation is only required to be displayed in a different color from the surroundings. Hence, the risk of people not being able to recognize the door of the fire shutter is quite high, and the danger increases further in a smoke situation. Therefore, this study attempted to find a way to mark a fire shutter door that can be recognized even when smoke is spreading. First, a preliminary questionnaire was used to draw three factors to mark the fire shutter door (sign, door background, and edge). The experiment type was set by combining 5 colors for the three derived factors. The experiment was conducted on a total of 122 male and female participants. The results showed that a yellow background, red sign, and red edge have the highest awareness in a normal visual field without smoke. This was also the same in the field of view in the case of a fire with smoke, but the red background, yellow sign, and yellow edge were most noticeable in the case of dark smoke.

Structural Evolution on Ag/Si(111) Ag/Si(111)√3X√3 with Adatom Coverage (흡착원자의 덮임율에 따른 Ag/Si(111)√3X√3의 구조 변화)

  • Jeong, Ho-Jin;Jeong, Suk-Min
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.387-393
    • /
    • 2008
  • Using a first-principles total-energy method, we investigate structural and energy changes on Ag/Si(111)$\sqrt{3}{\times}\sqrt{3}$($\sqrt{3}-Ag$ hereafter) as the number of the additional Ag adatoms increases. The Ag coverage varies from 0.02 to 0.14 ML. Most Ag adatoms occupy the ST site, which is the center of small triangles of the substrate Ag layer that is composed of small and large triangles. One of the interesting adsorption features is that the adatoms immerse below the substrate layer. The total energy calculations show that the clusters become the most stable when the number of Ag atoms is three. This three-Ag cluster becomes the building block of the $\sqrt{21}{\times}\sqrt{21}$ phase that shows a large surface conductivity. The simulated STM images show that the adatoms look dark in filled-state images while bright in empty-state images. This suggests that the adatoms donate their charge to the substrate. The simulated STM images agree well with the experimental images.

Pathogen Associated Molecular Pattern (PAMP)-Triggered Immunity Is Compromised under C-Limited Growth

  • Park, Hyeong Cheol;Lee, Shinyoung;Park, Bokyung;Choi, Wonkyun;Kim, Chanmin;Lee, Sanghun;Chung, Woo Sik;Lee, Sang Yeol;Sabir, Jamal;Bressan, Ray A.;Bohnert, Hans J.;Mengiste, Tesfaye;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.40-50
    • /
    • 2015
  • In the interaction between plants and pathogens, carbon (C) resources provide energy and C skeletons to maintain, among many functions, the plant immune system. However, variations in C availability on pathogen associated molecular pattern (PAMP) triggered immunity (PTI) have not been systematically examined. Here, three types of starch mutants with enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000 hrcC were examined for PTI. In a dark period-dependent manner, the mutants showed compromised induction of a PTI marker, and callose accumulation in response to the bacterial PAMP flagellin, flg22. In combination with weakened PTI responses in wild type by inhibition of the TCA cycle, the experiments determined the necessity of C-derived energy in establishing PTI. Global gene expression analyses identified flg22 responsive genes displaying C supply-dependent patterns. Nutrient recycling-related genes were regulated similarly by C-limitation and flg22, indicating re-arrangements of expression programs to redirect resources that establish or strengthen PTI. Ethylene and NAC transcription factors appear to play roles in these processes. Under C-limitation, PTI appears compromised based on suppression of genes required for continued biosynthetic capacity and defenses through flg22. Our results provide a foundation for the intuitive perception of the interplay between plant nutrition status and pathogen defense.

Development and Evaluation of Children's Smart Photonic Safety Clothing ( 어린이의 스마트 포토닉 안전의복의 개발 및 평가)

  • Soon-Ja Park;Dae-jin, Ko;Sung-eun, Jang
    • Science of Emotion and Sensibility
    • /
    • v.26 no.2
    • /
    • pp.129-140
    • /
    • 2023
  • Following ISO 20471, in this study, first, two sets of safety clothes and safety vests were made by designing and attaching animal and bird patterns preferred by children to retroreflective films and black fabrics on those fluorescent fabrics and retroreflective materials prescribed by international standards. Second, by mounting a smart photonic device on the safety clothing so that the body can be recognized from a distance even without an ambient light source at night, children can emit three types of light depending on the situation with just one-touch of the button. From a result of comparison with visibility a day and night by dressing a mannequin in the made smart safety clothing, the difference in visibility was evident at night, it was confirmed that we can see the figure of a person even at a distance of approximately 70 m. Therefore, it is expected to contribute to the prevention of traffic and other accidents on the road, as the drivers driving at night or in bad weather can recognize a person from a distance. Third, in case of the energy is exhausted and cannot maintain the stability of the light-emitting function of the optical faber, we can use energy harvesting device, and the light-emitting time will be extended. As a result it comes up to emit light stably for a long time. And this prove that smart photonic safety clothing can also be used for night workers. Therefore, optical fiber safety clothing is expected to be highly wearable not only in real life but also in dark industrial sites due to stable charging by applying the energy harvesting provided by solar cells.

Comparison of Electrical Signal Properties about Top Electrode Size on Photoconductor Film (광도전체 필름 상부 전극크기에 따른 전기적 신호 특성 비교)

  • Kang, Sang-Sik;Jung, Bong-Jae;Noh, Si-Cheul;Cho, Chang-Hoon;Yoon, Ju-Sun;Jeon, Sung-Pyo;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.2
    • /
    • pp.93-96
    • /
    • 2011
  • Currently, the development of direct conversion radiation detector using photoconductor materials is progressing in widely. Among of theses photoconductor materials, mercuric iodide compound than amorphous selenium has excellent absorption and sensitivity of high energy radiation. Also, the detection efficiency of signal generated in photoconductor film varies by electric filed and geometric distribution according to top-bottom electrode size. Therefore, in this work, the x-ray detection characteristics are investigated about the size of top electrode in $HgI_2$ photoconductor film. For sample fabrication, to solve the problem that is difficult to make a large area film, we used the spatial paste screen-print method. And the sample thickness is $150{\mu}m$ and an film area size is $3cm{\times}3cm$ on ITO-coated glass substrate. ITO(Indium-Tin-Oxide) electrode was used as top electrode using a magnetron sputtering system and each area is $3cm{\times}3cm$, $2cm{\times}2cm$ and $1cm{\times}1cm$. From experimental measurement, the dark current, sensitivity and SNR of the $HgI_2$ film are obtained from I-V test. From the experimental results, it shows that the sensitivity increases in accordance with the area of the electrode but the SNR is decreased because of the high dark current. Therefore, the optimized size of electrode is importance for the development of photoconductor based x-ray imaging detector.

MAGNETIC FIELD IN THE LOCAL UNIVERSE AND THE PROPAGATION OF UHECRS

  • DOLAG KLAUS;GRASSO DARIO;SPRINGEL VOLKER;TKACHEV IGOR
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.427-431
    • /
    • 2004
  • We use simulations of large-scale structure formation to study the build-up of magnetic fields (MFs) in the intergalactic medium. Our basic assumption is that cosmological MFs grow in a magnetohy-drodynamical (MHD) amplification process driven by structure formation out of a magnetic seed field present at high redshift. This approach is motivated by previous simulations of the MFs in galaxy clusters which, under the same hypothesis that we adopt here, succeeded in reproducing Faraday rotation measurements (RMs) in clusters of galaxies. Our ACDM initial conditions for the dark matter density fluctuations have been statistically constrained by the observed large-scale density field within a sphere of 110 Mpc around the Milky Way, based on the IRAS 1.2-Jy all-sky redshift survey. As a result, the positions and masses of prominent galaxy clusters in our simulation coincide closely with their real counterparts in the Local Universe. We find excellent agreement between RMs of our simulated galaxy clusters and observational data. The improved numerical resolution of our simulations compared to previous work also allows us to study the MF in large-scale filaments, sheets and voids. By tracing the propagation of ultra high energy (UHE) protons in the simulated MF we construct full-sky maps of expected deflection angles of protons with arrival energies $E = 10^{20}\;eV$ and $4 {\times} 10^{19}\;eV$, respectively. Accounting only for the structures within 110 Mpc, we find that strong deflections are only produced if UHE protons cross galaxy clusters. The total area on the sky covered by these structures is however very small. Over still larger distances, multiple crossings of sheets and filaments may give rise to noticeable deflections over a significant fraction of the sky; the exact amount and angular distribution depends on the model adopted for the magnetic seed field. Based on our results we argue that over a large fraction of the sky the deflections are likely to remain smaller than the present experimental angular sensitivity. Therefore, we conclude that forthcoming air shower experiments should be able to locate sources of UHE protons and shed more light on the nature of cosmological MFs.

Effect of Addition of Enzyme-Resistant Rice RS3 on Quality and Textural Characteristics of Madeleine (효소저항성 쌀전분의 첨가가 마들렌의 품질 및 텍스처 특성에 미치는 영향)

  • Kim, Wan-Soo
    • Korean Journal of Human Ecology
    • /
    • v.19 no.1
    • /
    • pp.191-201
    • /
    • 2010
  • This study attempted to examine the application of retrograded starch (RS3) isolated from rice flour into Madeleine which is easy to make, supply enough energy and micro nutrients with adequate drinks, and prevent an adult disease. This could be a popular food to anyone regardless of age and gender who avoid rice and become high value-added, processed rice foods. For this, control Madeleine was made from wheat flour and an experimental one was made from 5 or 10% rice RS3 addition as well as wheat flour. Four different types of rice were produced from Premium Ho-Pyong Rice, that is, dry milled rice flour(RFD), soaked for 8 hours and milled, followed by air-dried rice flour(RFW), rice starch(RST), and retrograded rice starch or enzyme-resistant starch(RS3). The results found were as follows: Proximate compositions were decreased with soaking to make RFW, RST and RS3, compared to RFD. RS3 had the highest L, +a and ${\Delta}E$ with the lowest +b, changing it to a dark color, explaining the need for heat control during processing. At $80^{\circ}C$, the swelling power was shown in the order of RST>RFW>RFD>RS3 and the solubility of RS3 was the highest. There were significant differences in viscosities of peak, trough, cold, breakdown and total setback of all rice samples using RVA (p<0.001). Due to the pH of RS3, the Madeleine batter became acidic (p<.01) and expanded, resulting in more air cells and open texture. With an increasing RS3 level in Madeleine, several textural attributes among 'fresh' and 'stored at room temperature' Madeleine samples were significantly different by using Texture Analyzer. While the addition of RS3 in Madeleine did not significantly affect the sensory evaluation, indicating RS3 isolated from rice as a beneficial ingredient for processed rice products.

Luminescence properties of a new $Tb^{3+}$ ion activated long persistent phosphor (새로운 $Tb^{3+}$ 이온 활성 축광성 형광체의 발광 특성)

  • Park, Byeong-Seok;Choi, Jong-Geon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.3
    • /
    • pp.130-134
    • /
    • 2009
  • A new long persistent phosphors of $CaZrO_3$ was synthesized at high temperature with weak reduction atmosphere by a traditional solid state reaction method. Photoluminescence spectra analysis showed that the $CaZrO_3$ doped with $Tb^{3+}$ emitted green-yellow emission caused by the energy level transition from the $^5D_3$ and $^5D_4$ to $^7F_1{\sim}^7F_6$. The main emission spectra of 542 nm peak by the $^5D_4{\rightarrow}^7F_5$ transition was revealed through synthesizing at high temperature in $N_2$ gas atmosphere. The afterglow emission spectra of $CaZrO_3:Tb^{3+}$ long persistent phosphores arise at 546 nm peak of narrow range. After the 254 nm ultraviolet light excitation source was switched off, the green-yellow long persistent phosphor can be observed which could last for 8 h in the limit of light perception of dark-adapted human eyes ($0.32\;mcd/m^2$).

Effects of NaOH and Humic Acid on the UV Photolysis of PCBs (PCBs의 광화학적 연구: NaOH 및 휴믹산 (humic acid, HA)에 의한 분해특성)

  • Shin, Hae Seung;Kim, Jae Hyoun
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.2
    • /
    • pp.147-156
    • /
    • 2014
  • Objectives: This study was carried out to examine whether the apparent photolysis with or without sensitizers [NaOH and humic acid (HA)] was prompted photodegradation of polychlorinated biphenyl (PCB) in aqueous solution. Methods: PCBs photodegradation occurred using fluorescence black lamps at ${\lambda}_{max}=300nm$. PCB congeners were exposed in 10 ppm HA or 0.05N NaOH solutions, to investigate the decreasing profile of PCB concentration with time. The PCBs were then analyzed by gas chromatography/mass spectrometry (GC-MS). Reductive degradation profile of PCB congeners in the presence of both sensitizers under oxygen-saturated protic conditions was described using the wind-rose diagrams. Results: Use of HA or NaOH decreased PCB concentration with time in the dark and on irradiation, indicating that photolysis underwent through reductive dechlorination through energy transfer and possibly with reactive oxygens. The dechlorination was marked by a chromatographic shift, observed in the GC-MS plots. Therefore it is logical to assume that increasing the dose of sensitizers would increase the photodegradation rates of PCBs. The half-lives of pentachloro-PCB (penta-3) in 0.05N NaOH and 10 ppm HA were estimated at about 47 hours and 39 hours, respectively, under the same experimental conditions of photolysis. It was found that the rate of photolysis of pentachloro-PCB in aqueous solution followed apparent first-order kinetics compared to other congeners. Conclusion: Photochemical degradation (using 328 nm UV light) of penta- and hexa-PCBs in HA or alkaline solution is a viable method for pretreatment method. The results are helpful for the further comprehension of the reaction mechanism for photolytic dechlorination of PCBs in aquatic system.