• Title/Summary/Keyword: dark and photo conductive

Search Result 4, Processing Time 0.022 seconds

Photo-conductive properties of CdS thin film deposited on glass substrate (글라스 기판위에 증착한 CdS 박막의 광전특성 평가)

  • Phuong, Nguyen Mai;Hur, Sung-Gi;Kim, Eui-Tae;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.338-338
    • /
    • 2007
  • Photo-conductive properties of CdS films deposited on glass substrates by a reactive sputtering in Ar atmosphere were characterized as a function of working pressure and the film thickness. The XRD measurements of CdS films revealed obvious (002) preferred orientation. In 300nm-thick of films, difference between dark and photo-resistance increases with increasing working pressure within the films. The films at 5 mTorr of working pressure show a dark resistance of approximately $1\;{\times}\;10^6\;{\Omega}/{\square}$ and a photo-resistance of $3\;{\times}\;10^4\;{\Omega}/{\square}$. The decrease dark- and photo-resistance of films as thickness decrease were $1.4\;{\times}\;10^6$ and $3\;{\times}\;10^4\;{\Omega}/{\square}$, respectively. CdS films deposited on glass substrates are considered tobe suitable for photo-conductivity materials in stealth radome applications.

  • PDF

Electrical Properties and Reliability of the Photo-conductive CdS Thin Films for Flexible Opto-electronic Device Applications (유연성 광전도 CdS 박막의 증착조건에 따른 전기적 특성 및 신뢰성 평가 연구)

  • Hur, Sung-Gi;Cho, Hyun-Jin;Park, Kyoung-Woo;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1023-1027
    • /
    • 2009
  • Cadmium sulfide (CdS) thin film for flexible optical device applications were prepared at $H_2/(Ar+H_2)$ flow ratios on polyethersulfon (PES) flexible polymer substrates at room temperature by radio frequency magnetron sputtering technique. The CdS thin films deposited at room temperature showed a (002) preferred orientation and the smooth surface morphologies. Films deposited at a hydrogen flow ratio of 25% exhibited a photo- and dark-sheet resistance of about 50 and $2.7\;{\times}\;10^5\;{\Omega}/square$, respectively. From the result of the bending test, CdS films exhibit a strong adhesion with the PES polymer substrates and the $Al_2O_3$ passivation layer deposited on the CdS films only shows an increase of the resistance of 8.4% after exposure for 120 h in air atmosphere.

양자점 원적외선 수광소자 전망

  • 이욱현;강용훈;엄준호;홍성철;최원준;이동한;김문덕;노삼규;이정일
    • The Magazine of the IEIE
    • /
    • v.30 no.5
    • /
    • pp.499-508
    • /
    • 2003
  • 실제 실험에 사용한 대표적인 InAs/GaAs QUDIP에 대해서 detector를 평가하는데 사용하는 responsitity D*뿐만 아니라 이두 값을 좌우하는 phottoconductive gain 양자효율 noise current에 대해 정량적으로 살펴보고 QWIP와 비교해보았다 우선 가장 중요한 것은 QDIP의 온도가 약 10K에서 거의 200K까지 올라가도 responsivity와 D* 모두 온도에 따라 민감하게감소하지 않는다는 사실이다(거의 10배 정도만 감소했음). 이러한 측정결과는 QDIP의 가장 큰 장점인 실온 동작 가능성이 아주 높음을 확인시켜 준다. 참고로, 이미 사용되고 있는 QWIP나 MCT detector는 낮은 온도 영역에서도 온도가 증가함에 따라 responsivity와 D*가 민감하게 감소해서 77K 이상에서는 동작하지 않는다. 두번째로, QWIP는 시료의 표면에 수직 입사되는 IR에 반응하지 않는데, QDIP는 시료의 표면에 수직 입사되는 IR에도 잘 반응함을 확인하였다. 이러한 두 가지 특성은 QDIP가 가질 것이라고 예상되던 QDIP의 가장 큰 장점으로, QDIP가 mid IR이나 far IR detector로서의 전망이 아주 밝음을 보여준다. 저온에서 QDIP의 responsivity는 수 A/W 로, 보통의 QWIP의 responsivity가 수십 mA/W인 것을 고려할 때, 충분히 큰 값이었다. QDIP의 responsivity가 이렇게 큰 이유는 photo-conductive gain이 1000 이상으로 매우 컸기 때문이었다. 반면에, 양자효율은 0.01% 이하로 아주 작았는데, 이것은 흡수 계수 자체보다는 흡수 두께가 작기 때문인 것 같고, 따라서 QDIP의 주기 수를 늘릴 필요가 있음을 알았다. Detector를 평가하는데 가장 중요한 것은 responsivity보다는 D*인데, photoconductive gain과 양자효율의 곱에 비례하는 responsivity는 $\sim$A/W로 충분히 컸지만, 반면에 D*는 $\sim$2E8으로 QWIP에 비해 작았다. 이것은 noise current가 컸기 때문이며 이를 줄이는 것이 중요하다. Noise current의 주된 요인이 dark current에 비례하는 g-r noise이므로, dark current를 줄이는 구조가 필요하다. 대표적인 예가 AlGaAs 같은 additional barrier를 넣어 dark current를 줄이는 방법이다. QDIP의 주기 수를 늘리는 것도 dark current를 줄이는 데 도움이 될 것이다.

  • PDF

Photoemission Electron Micro-spectroscopic Study of the Conductive Layer of a CVD Diamond (001)$2{\times}1$ Surface

  • Kono, S.;Saitou, T.;Kawata, H.;Goto, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.7-8
    • /
    • 2010
  • The surface conductive layer (SCL) of chemical vapor deposition (CVD) diamonds has attracting much interest. However, neither photoemission electron microscopic (PEEM) nor micro-spectroscopic (PEEMS) information is available so far. Since SCL retains in an ultra-high vacuum (UHV) condition, PEEM or PEEMS study will give an insight of SCL, which is the subject of the present study. The sample was made on a Ib-type HTHP diamond (001) substrate by non-doping CVD growthin a DC-plasma deposition chamber. The SCL properties of the sample in air were; a few tens K/Sq. in sheet resistance, ${\sim}180\;cm^2/vs$ in Hall mobility, ${\sim}2{\times}10^{12}/cm^2$ in carrier concentration. The root-square-mean surface roughness (Rq) of the sample was ~0.2nm as checked by AFM. A $2{\times}1$ LEED pattern and a sheet resistance of several hundreds K/Sq. in UHV were checked in a UHV chamber with an in-situ resist-meter [1]. The sample was then installed in a commercial PEEM/S apparatus (Omicron FOCUS IS-PEEM) which was composed of electro-static-lens optics together with an electron energy-analyzer. The presence of SCL was regularly monitored by measuring resistance between two electrodes (colloidal graphite) pasted on the two ends of sample surface. Figure 1 shows two PEEM images of a same area of the sample; a) is excited with a Hg-lamp and b) with a Xe-lamp. The maximum photon energy of the Hg-lamp is ~4.9 eV which is smaller that the band gap energy ($E_G=5.5\;eV$) of diamond and the maximum photon energy of the Xe-lamp is ~6.2 eV which is larger than $E_G$. The image that appear with the Hg-lamp can be due to photo-excitation to unoccupied states of the hydrogen-terminated negative electron affinity (NEA) diamond surface [2]. Secondary electron energy distribution of the white background of Figs.1a) and b) indeed shows that the whole surface is NEA except a large black dot on the upper center. However, Figs.1a) and 1b) show several features that are qualitatively different from each other. Some of the differences are the followings: the two main dark lines A and B in Fig.1b) are not at all obvious and the white lines B and C in Fig.1b) appear to be dark lines in Fig.1a). A PEEMS analysis of secondary electron energy distribution showed that all of the features A-D have negative electron affinity with marginal differences among them. These differences can be attributed to differences in the details of energy band bending underneath the surface present in SCL [3].

  • PDF