• Title/Summary/Keyword: dangerous vehicle

Search Result 170, Processing Time 0.029 seconds

UAV Autopilot Design under External Disturbances

  • Eun, Youn-Ju;Hyochoong Bang;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.40.3-40
    • /
    • 2002
  • Unmanned Aerial Vehicle(UAV) needs autonomous flight capability to accomplish various mission objectives. For this objective, the autopilot is a key element in the UAV system design. The principal goal of autopilot is to guide the aircraft under varying external disturbances throughout the mission phases. The external disturbances include gravity effect, wind gust, and other unexpected obstacles. The gust affects the aircraft flight performance to a significant extent. UAV's low speed, light weight, and the absence of human judgment makes un predictable gust more dangerous. Autopilot design in general takes the gust effect into account to satisfy flight performance requirement. In this study..

  • PDF

Applications and Key Technologies of Biomimetic Underwater Robot for Naval Operations (생체모방형 수중로봇의 해양작전 운용개념 및 핵심소요기술)

  • Lee, Ki-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.189-200
    • /
    • 2015
  • This paper gives an overview on the some potential applications and key technologies of biomimetic underwater robot for naval operations. Unlike most manned underwater naval systems, biomimetic underwater robots can be especially useful in near-land or harbour areas due to their ability to operate in shallow water effectively. Biomimetic underwater robot provide advantages in reaching locations that would be difficult or too dangerous for a manned vehicle to reach, as well as providing a level of autonomy that can remove the requirement for dedicated human operator support. Using multiple or schools of underwater robots would provide increased flexibility for navigation, communication and surveillance ability. And it alleviate some of the restrictions associated with speed and endurance design constraints.

An Adaptive Cruise Control Systems for Intelligent Vehicles in Accordance with Vehicles Distance (지능형 차량을 위한 차간거리에 따른 능동 주행 제어 시스템 연구)

  • Bae, Jong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1157-1162
    • /
    • 2013
  • This thesis describes the active cruise control which is a part of AVHS(Advanced Vehicle and Highway System) in the ITS(Intelligent Transportation Systems). The active cruise control is a system which recognizes some obstructions and vehicles in front, drives in safe speed and puts on the brake in dangerous situations as the driver simply turns on the switch without stepping on the accelerator and brake. PID controller is used in the speed-control by linearizing the longitudinal model of the vehicle, obstacle detecting algorithm which makes use of the laser scanner is proposed to recognize the situation in front and the system's performance is tested.

The Design and Implementation of Driver Safety Assist System by Analysis of Driving Behavior Data (운전자 운전행동 분석을 통한 안전운전 지원시스템 설계 및 구현)

  • Ko, Jae-Jin;Choi, Ki-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.2
    • /
    • pp.165-170
    • /
    • 2013
  • In this paper, we propose the information acquisition and analysis system for a vehicle driver in order to provide the safe driving environments. We first define the list of reckless driving behaviors and propose the recognition system, which recognizes the reckless behaviors, by using the acquired information. The collaboration among the information acquisition, the analysis, and the behavior comparison modules increases the accuracy of the recognition rate. Our system alarms to a vehicle driver in order to notify the potential to confront the dangerous situation due to the abnormal or reckless driving behaviors.

Implementation of underwater precise navigation system for a remotely operated mine disposal vehicle

  • Kim, Ki-Hun;Lee, Chong-Moo;Choi, Hyun-Taek;Lee, Pan-Mook
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.102-109
    • /
    • 2011
  • This paper describes the implementation of a precise underwater navigation solution using a multiple sensor fusion technique based on USBL, GPS, DVL and AHRS measurements for the operation of a remotely operated mine disposal vehicle (MDV). The estimation of accurate 6DOF positions and attitudes is the key factor in executing dangerous and complicated missions. To implement the precise underwater navigation, two strategies are chosen in this paper. Firstly, the sensor frame alignment to the body frame is conducted to enhance the performance of a standalone dead-reckoning algorithm. Secondly, absolute position data measured by USBL is fused to prevent cumulative integration error. The heading alignment error is identified by comparing the measured absolute positions with the DR algorithm results. The performance of the developed approach is evaluated with the experimental data acquired by MDV in the South-sea trial.

The Study of Improve Safety for Signaling System using Communication (통신에 의한 신호시스템의 안전성 확보에 대한 연구)

  • 백종현;한성호;안태기;온정근
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.307-314
    • /
    • 1999
  • The potential use of ranging sensors for reducing the occurrence of accidents in real environment is explored by many companies and laboratories. Most of the sensors under investigation utilize the FMCW(Frequency Modulated Continuous Wave) waveforms. The automotive environment presents to the FMCW radar sensor a multitude of moving and fixed targets and the sensor must detect and track only the targets which may pose a threat of collision or passengers accident. The sensor must function accurately in the presence of background echoes generated by moving and fixed targets, ground reflections, atmospheric noises, including rains, fog, and, snow and noise generated within the receiver. False detection of the desired target in this environment may issue false alarms. That may be dangerous to the passenger and the vehicle. A high false alarm rate is totally unacceptable. The false alarm mechanism consists of noise peaks, crossing the threshold and the undesired response of the system to off lane targets which are not potentially hazardous to the radar equipped vehicle. This paper presents an improve technique safety performance for driver-less operation using FMCW radar sensors.

  • PDF

The Study of Improved Safety of Signalling System using Communication (통신에 의한 신호시스템의 안전성 확보에 관한 연구)

  • Baek, Jong-Hyen;Wang, Jong-Bae;Byun, Yeun-Sub;Park, Hyun-Jun;Han, Young-Jae;Kim, Kil-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1368-1370
    • /
    • 2000
  • The automotive environment presents to the FMCW radar sensor a multitude of moving and fixed targets and the sensor must detect and track only the targets which may pose a threat of collision or passengers accident. The sensor must function accurately in the presence of background echoes generated by moving and fixed targets, ground reflections, atmospheric noises, including rains, fog, and, snow and noise generated within the receiver. False detection of the desired target in this environment may issue false alarms. That may be dangerous to the passenger and the vehicle. A high false alarm rate is totally unacceptable. The false alarm mechanism consists of noise peaks, crossing the threshold and the undesired response of the system to off lane targets which are not potentially hazardous to the radar equipped vehicle. This paper presents an improve technique safety performance for driver-less operation using FMCW radar sensors.

  • PDF

The Driving Situation Judgment System(DSJS) using road roughness and vehicle passenger conditions (도로 거칠기와 차량의 승객 상태를 활용한 DSJS(Driving Situation Judgment System) 설계)

  • Son, Su-Rak;Jeong, Yi-Na;Ahn, Heui-Hak
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.3
    • /
    • pp.223-230
    • /
    • 2021
  • Currently, self-driving vehicles are on the verge of commercialization after testing. However, even though autonomous vehicles have not been fully commercialized, 81 accidents have occurred, and the driving method of vehicles to avoid accidents relies heavily on LiDAR. In order for the currently commercialized 3-level autonomous vehicle to develop into a 4-level autonomous vehicle, more information must be collected than previously collected information. Therefore, this paper proposes a Driving Situation Judgment System (DSJS) that accurately calculates the crisis situation the vehicle is in by useing the roughness of the road and the state of the passengers of surrounding vehicles including road information and weather information collected from existing autonomous vehicles. As a result of DSJS's PDM experiment, PDM was able to classify passengers 15.52% more accurately on average than the existing vehicle's passenger recognition system. This study can be a basic research to achieve the 4th level autonomous vehicle by collecting more various types than the data collected by the existing 3rd level autonomous vehicle.

Development of a Frontal Collision Detection Algorithm Using Laser Scanners (레이져 스캐너를 이용한 전방 충돌 예측 알고리즘 개발)

  • Lee, Dong-Hwi;Han, Kwang-Jin;Cho, Sang-Min;Kim, Yong-Sun;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.113-118
    • /
    • 2012
  • Collision detection plays a key role in collision mitigation system. The malfunction of the collision mitigation system can result in another dangerous situation or unexpected feeling to driver and passenger. To prevent this situation, the collision time, offset, and collision decision should be determined from the appropriate collision detection algorithm. This study focuses on a method to determine the time to collision (TTC) and frontal offset (FO) between the ego vehicle and the target object. The path prediction method using the ego vehicle information is proposed to improve the accuracy of TTC and FO. The path prediction method utilizes the ego vehicle motion data for better prediction performance. The proposed algorithm is developed based on laser scanner. The performance of the proposed detection algorithm is validated in simulations and experiments.

Development of Mobile Equipment for Local Risk Factors Detecting of Road Slope (도로사면의 국부적 위험요인 검지를 위한 이동형 장비 개발)

  • Kim, Yong-Soo;Jung, Soo-Jung;Ahn, Sang-Ro
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.938-945
    • /
    • 2008
  • Rockfall and landslide bring about a great social loss with loss of property such as obstruction of traffic and damage of the crops as well as casualty. The purpose of this study is to develop a mobile equipment for local risk factors detecting of road slope. The mobile equipment is designed to receive the sensing data from the measurement sensors, which are installed to detect the dangerous signs from the slopes, as loaded on a vehicle which is moving around to the places where the sensors are installed. In general, more than one mandatory data logger, which is very expensive, must be installed at each slope for the automatic measuring system, but in case of this developmental system, the inexpensive routine measurement can be performed regardless of the number of slopes due to the single unit of information gathering vehicle. This study is going to develop technologies that are expected to be applied to not only slope but also tunnel and bridges which might have the partial risk and need measuring.

  • PDF