• 제목/요약/키워드: dampers

검색결과 1,032건 처리시간 0.022초

반능동 제어 시스템을 이용한 사장케이블의 진동제어 (Vibration Control of Stay Cables Using Semiactive Control System)

  • 장지은;정형조;윤우현;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.57-64
    • /
    • 2004
  • Stay cables, such as are used in cable-stayed bridges, are prone to vibration due to their low inherent damping characteristics. Several methods have been proposed and implemented to mitigate this problem, though each has its limitations. Recently some studies have shown that semiactive dampers can potentially achieve performance levels nearly the same as comparable active devices with few of the detractions. This paper presents the results of a study to evaluate the performance of semiactive dampers for mitigating the vibration of stay cables. Moreover, a number of recently proposed semiactive control algorithms are formulated for use with shear mode MR damper to compare the efficiency of each algorithm through numerical simulation. Numerical simulation considers a stay cable excited by shaker and controlled by shear mode MR dampers. In simulation, the response with a semiactive damper is found to be dramatically reduced compared to the uncontrolled case. Furthermore, it is verified that the algorithm based on Lyapunov control theory is very efficient in mitigating the cable vibration.

  • PDF

초고층 주거형 건축물의 횡변위 제어를 위한 제진장치의 적용성 평가 (An Evaluation of the Dampers for the Drift Control in Resident Tall Building)

  • 박지형;김태호;김욱종;이도범
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.499-504
    • /
    • 2008
  • Recently, the problem controlling lateral drift is important in tall buildings for improvement in economic efficiency and habitability. But, the Outrigger System, general used for tall building in Korea, has weak points with the occupancy of special space and the long duration of works. The dampers are applied to actively control building's response by earthquake and wind load in these days. Accordingly, we analyze the effect of the drift control using various dampers to substitute for the Outrigger System as the efficient system in tall buildings.

  • PDF

ER 댐퍼의 밸브 형상에 따른 감쇠 특성의 해석 및 실험 (An Analysis and Test Results of Damping Characteristics of ER Dampers with Two Different Valve Types)

  • 장보영;이종민;김창호;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.608-613
    • /
    • 1998
  • Damping characteristics of ER dampers and flow rates inside ER valve with two different valve types were analyzed and compared with test results. Fluid flow inside ER valves was modeled by Bingham plastic model and Hagen-Poiseulli flow, while the equations of motion of total ER damper system were modeled by flow and hydraulic force balance. A general straight valve case was compared with a bended valve case which is newly tested for a possible improvement of ER damping force. As expected, the bended ER valve generates higher damping force and lower flow rates than the conventional straight ER valve due to additional flow restriction at the bended section. Analytical models of ER valve and ER damper generally predict reasonable performance characteristics of tested results. Therefore, developed analysis can be used for designing new ER dampers and simulation of ER semi-active suspension system as well.

  • PDF

인공신경망을 이용한 MR댐퍼의 동특성 모델링 (Dynamic Characteristics Modeling for A MR Damper using Artifical Neural Network)

  • 백운경;이종석;손정현
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.170-176
    • /
    • 2004
  • MR dampers show highly nonlinear and histeretic dynamic behavior. Therefore, for a vehicle dynamic simulation with MR dampers, this dynamic characteristics should be accurately reflected in the damper model. In this paper, an artificial neural network technique was developed for modeling MR dampers. This MR damper model was successfully verified through a random input forcing test. This MR damper model can be used for semi-active suspension vehicle dynamics and control simulations with practical accuracy.

An energy-based design for seismic resistant structures with viscoelastic dampers

  • Paolacci, F.
    • Earthquakes and Structures
    • /
    • 제4권2호
    • /
    • pp.219-239
    • /
    • 2013
  • The present paper aims at studying the seismic response of structures equipped with viscoelastic dampers (VED). The performance of such a passive control system is here analyzed using the energy balance concept, which leads to an optimal design process. The methodology is based on an energy index (EDI) whose maximization permits determination of the optimal mechanical characteristics of VED. On the basis of a single degree of freedom model, it is shown that the maximum value of EDI corresponds to a simultaneous optimization of the significant kinematic and static response quantities, independently of the input. By using the proposed procedure, the optimal design of new and existing structures equipped with VED, inserted in traditional bracing systems, are here analyzed and discussed.

Stochastic optimum design criterion of added viscous dampers for buildings seismic protection

  • Marano, Giuseppe Carlo;Trentadue, Francesco;Greco, Rita
    • Structural Engineering and Mechanics
    • /
    • 제25권1호
    • /
    • pp.21-37
    • /
    • 2007
  • In this study a stochastic approach for linear viscous dampers design adopted for seismic protection of buildings is developed. Devices optimal placement into the main structure and their mechanical parameters are attained by means of a reliability-based optimum design criterion, in which an objective function (O.F.) is minimized, subject to a stochastic constraint. The seismic input is modelled by a non stationary modulated Kanai Tajimi filtered stochastic process. Building is represented by means of a plane shear type frame model. The selected criterion for the optimization searches the minimum of the O.F., here assumed to be the cost of the seismic protection, i.e., assumed proportional to the sum of added dampings of each device. The stochastic constraint limits a suitable approximated measure of the structure failure probability, here associated to the maximum interstorey drift crossing over a given threshold limit, related, according with modern Technical Codes, to the required damage control.

유효감쇠비를 이용한 점탄성 감쇠기의 설계 (Design of Viscoelastic Dampers Using Effective Damping Ratio)

  • 최현훈;김진구
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.371-378
    • /
    • 2001
  • To enhance seismic performance of a structure ATC-40 and FEMA-273 propose technical strategies such as increasing strength, altering stiffness, and reducing demand by employing base isolation and energy dissipation devices. Specifically the energy dissipation devices directly increase the ability of the structure to dampen earthquake response. However nonlinear dynamic time history analysis of a structure with energy dissipation devices is complicated and time consuming. In this study a simple and straightforward procedure is developed using effective damping ratio to obtain the required amount of viscoelastic dampers in order to meet given performance objectives. Parametric study has been performed for the period of the structure, yield strength, and the stiffness after the first yield. According to the analysis results, earthquake demand and required damping ratio were reduced by installing viscoelastic dampers. The results also show that with the addition of the supplemental damping evaluted by the proposed method the performance of the model structures are well restrained within the target point.

  • PDF

점탄성-슬릿 복합댐퍼로 보강된 건물의 내진성능평가 (Seismic Performance Evaluation of Structures Retrofitted with Viscoelastic-Slit Hybrid Dampers)

  • 김민성;자오동쉬;김진구
    • 한국지진공학회논문집
    • /
    • 제22권7호
    • /
    • pp.361-367
    • /
    • 2018
  • This study investigates the seismic performance of a hybrid seismic energy dissipation device composed of a viscoelastic damper and a steel slit damper connected in parallel. A moment-framed structure is designed without seismic load and is retrofitted with the hybrid dampers. The model structure is transformed into an equivalent simplified system to find out optimum story-wise damper distribution pattern using genetic algorithm. The effectiveness of the hybrid damper is investigated by fragility analysis of the structure with and without the dampers. The analysis results show that after seismic retrofit the probability of reaching damage states, especially the complete damage state, of the structure turn out to be significantly reduced.

ENTA이력댐퍼의 실험과 유한 요소 해석을 통한 내진 성능 검증 (Experiment of ENTA Hysteretic Damper and Verification of Seismic Performance Through Finite Element Analysis)

  • 이홍석;황정현;이기학
    • 한국공간구조학회논문집
    • /
    • 제20권1호
    • /
    • pp.79-86
    • /
    • 2020
  • The performance enhancement of various damping systems from natural hazards has become an highly important issue in engineering field. In this paper, ENTA hysteretic dampers were tested under cyclic loadings to evaluate their performance in terms of ductility and energy dissipation. The test results showed that the hysteretic dampers are effective damping systems to enhance the buildings performance for remodeling and retrofit of buildings. Also, the hysteretic dampers were modeled in FEM(Finite Element Method) structural analysis program. As comparing the computer modeling and the experiment, this study model reflects the nonlinear behavior of steel and derives the hysteresis loop.

다중 MR 감쇠기의 효과적인 동시제어를 위한 제어알고리즘 개발 (Development of Control Algorithm for Effective Simultaneous Control of Multiple MR Dampers)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제13권3호
    • /
    • pp.91-98
    • /
    • 2013
  • A multi-input single-output (MISO) semi-active control systems were studied by many researchers. For more improved vibration control performance, a structure requires more than one control device. In this paper, multi-input multi-output (MIMO) semi-active fuzzy controller has been proposed for vibration control of seismically excited small-scale buildings. The MIMO fuzzy controller was optimized by multi-objective genetic algorithm. For numerical simulation, five-story example building structure is used and two MR dampers are employed. For comparison purpose, a clipped-optimal control strategy based on acceleration feedback is employed for controlling MR dampers to reduce structural responses due to seismic loads. Numerical simulation results show that the MIMO fuzzy control algorithm can provide superior control performance to the clipped-optimal control algorithm.