• 제목/요약/키워드: damper optimization

검색결과 172건 처리시간 0.021초

Response surface methodology based multi-objective optimization of tuned mass damper for jacket supported offshore wind turbine

  • Rahman, Mohammad S.;Islam, Mohammad S.;Do, Jeongyun;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • 제63권3호
    • /
    • pp.303-315
    • /
    • 2017
  • This paper presents a review on getting a Weighted Multi-Objective Optimization (WMO) of Tuned Mass Damper (TMD) parameters based on Response Surface Methodology (RSM) coupled central composite design and Weighted Desirability Function (WDF) to attenuate the earthquake vibration of a jacket supported Offshore Wind Turbine (OWT). To optimize the parameters (stiffness and damping coefficient) of damper, the frequency ratio and damping ratio were considered as a design variable and the top displacement and frequency response were considered as objective functions. The optimization has been carried out under only El Centro earthquake results and after obtained the optimal parameters, more two earthquakes (California and Northridge) has been performed to investigate the performance of optimal damper. The obtained results also compared with the different conventional TMD's designed by Den Hartog's, Sadek et al.'s and Warburton's method. From the results, it was found that the optimal TMD based on RSM shows better response than the conventional damper. It is concluded that the proposed response model offers an efficient approach regarding the TMD optimization.

Mechanics model of novel compound metal damper based on Bi-objective shape optimization

  • He, Haoxiang;Ding, Jiawei;Huang, Lei
    • Earthquakes and Structures
    • /
    • 제23권4호
    • /
    • pp.363-371
    • /
    • 2022
  • Traditional metal dampers have disadvantages such as a higher yield point and inadequate adjustability. The experimental results show that the low yield point steel has superior energy dissipation hysteretic capacity and can be applied to seismic structures. To overcome these deficiencies, a novel compound metal damper comprising both low yield point steel plates and common steel plates is presented. The optimization objectives, including "maximum rigidity" and "full stress state", are proposed to obtain the optimal edge shape of a compound metal damper. The numerical results show that the optimized composite metal damper has the advantages such as full hysteresis curve, uniform stress distribution, more sufficient energy consumption, and it can adjust the yield strength of the damper according to the engineering requirements. In view of the mechanical characteristics of the compound metal damper, the equivalent model of eccentric cross bracing is established, and the approximate analytical solution of the yield strength and the yield displacement is proposed. A nonlinear simulation analysis is carried out for the overall aseismic capacity of three-layer-frame structures with a compound metal damper. It is verified that a compound metal damper has better energy dissipation capacity and superior seismic performance, especially for a damper with double-objective optimized shape.

Optimization of base-isolated structure with negative stiffness tuned inerter damper targeting seismic response reduction

  • Jean Paul Irakoze;Shujin Li;Wuchuan Pu;Patrice Nyangi;Amedee Sibomana
    • Earthquakes and Structures
    • /
    • 제25권6호
    • /
    • pp.399-415
    • /
    • 2023
  • In this study, we investigate the use of a negative stiffness tuned inerter damper system to improve the performance of a base-isolated structure. The negative stiffness tuned inerter damper system consists of a tuned inerter damper connected in parallel with a negative stiffness element. To find the optimal parameters for the base-isolated structure with negative stiffness tuned inerter damper system, we develop an optimization method based on performance criteria. The objective of the optimization is to minimize the superstructure acceleration response ratio, while ensuring that the base displacement response ratio remains below a specified target value. We evaluate the proposed method by conducting numerical analyses on an eight-story building. The structure is modeled using both a simplified 3-degree-of-freedom system and a more detailed story-by-story shear-beam model. Lastly, a comparative analysis using time history analysis is performed to compare the performance of the base-isolated structure with negative stiffness tuned inerter damper system with that of the base-isolated structure and base-isolated structure with tuned inerter damper systems. The results obtained from the comparative analysis show that the negative stiffness tuned inerter damper system outperforms the tuned inerter damper system in reducing the dynamic seismic response of the base-isolated structure. Overall, this study demonstrates that the negative stiffness tuned inerter damper system can effectively enhance the performance of base-isolated structures, providing improved seismic response reduction compared to other systems.

Vibration control of offshore wind turbine using RSM and PSO-optimized Stockbridge damper under the earthquakes

  • Islam, Mohammad S.;Do, Jeongyun;Kim, Dookie
    • Smart Structures and Systems
    • /
    • 제21권2호
    • /
    • pp.207-223
    • /
    • 2018
  • In this inquisition, a passive damper namely Stockbridge Damper (SBD) has been introduced to the field of vibration control of Offshore Wind Turbine (OWT) to reduce the earthquake excitations. The dynamic responses of the structure have been analyzed for three recorded earthquakes and the responses have been assessed. To find an optimum SBD, the parameters of damper have been optimized using Response Surface Methodology (RSM) based on Box-Behnken Design (BBD) and Particle Swarm Optimization (PSO). The influence of the design variables of SBD such as the diameter of messenger cable, the length of messenger cable and logarithmic decrement of the damping has been investigated through response variables such as maximum displacement, RMS displacement and frequency amplitude of structure under an artificially generated white noise. After that, the structure with optimized and non-optimized damper has been analyzed with under the same earthquakes. Moreover, the comparative results show that the structure with optimized damper is 11.78%, 18.71%, 11.6% and 7.77%, 7.01%, 10.23% more effective than the structure with non-optimized damper with respect to the displacement and frequency response under the earthquakes. The results show that the SBD can obviously affect the characteristics of the vibration of the OWT and RSM based on BBD and PSO approach can provide an optimum damper.

MR 댐퍼의 최적설계 : 이론적 방법 및 유한요소 방법 (Optimal Design of MR Damper : Analytical Method and Finite Element Method)

  • 하성훈;성민상;구오흥;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.581-586
    • /
    • 2009
  • This paper presents an optimal design of magnetorheological(MR) damper based on analytical methodology and finite element analysis. The proposed MR damper consists of MR valve and gas chamber. The MR valve is constrained in a specific volume and the optimization problem identifies geometric dimensions of the valve structure that maximize the pressure drop of the MR valve or damping force of the MR damper. In this work, the single-coil annular MR valve structure is considered. After describing the schematic configuration and operating principle of MR valve and damper, a quasi-static model is derived based on Bingham model of MR fluid. The magnetic circuit of the valve and damper is then analyzed by applying the Kirchoff’s law and magnetic flux conservation rule. Based on the quasi-static modeling and the magnetic circuit analysis, the optimization problem of the MR valve and damper is built. The optimal solution of the optimization problem of the MR valve structure constrained in a specific volume is then obtained and compared with the solution obtained from finite element method.

  • PDF

MR 댐퍼의 최적설계 : 이론적 방법 및 유한요소 방법 (Optimal Design of MR Damper : Analytical Method and Finite Element Method)

  • 하성훈;성민상;구오흥;최승복
    • 한국소음진동공학회논문집
    • /
    • 제19권11호
    • /
    • pp.1110-1118
    • /
    • 2009
  • This paper presents an optimal design of magnetorheological(MR) damper based on analytical methodology and finite element analysis. The proposed MR damper consists of MR valve and gas chamber. The MR valve is constrained in a specific volume and the optimization problem identifies geometric dimensions of the valve structure that maximize the pressure drop of the MR valve or damping force of the MR damper. In this work, the single-coil annular MR valve structure is considered. After describing the schematic configuration and operating principle of MR valve and damper, a quasi-static model is derived based on Bingham model of MR fluid. The magnetic circuit of the valve and damper is then analyzed by applying the Kirchoff' s law and magnetic flux conservation rule. Based on the quasi-static modeling and the magnetic circuit analysis, the optimization problem of the MR valve and damper is built. The optimal solution of the optimization problem of the MR valve structure constrained in a specific volume is then obtained and compared with the solution obtained from finite element method.

Design and Evaluation a Multi-coil Magneto-rheological Damper for Control Vibration of Washing Machine

  • Phu, Do Xuan;Park, Joon Hee;Woo, Jae Kwan;Choi, Seung Bok
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.543-548
    • /
    • 2013
  • 이 논문은 세탁기의 진동제어를 위한 MR 댐퍼의 설계과정을 제시한다. 이 연구에서는 MR 댐퍼의 작은 크기와 함께 높은 댐핑력과 저전력을 소비하도록 설계되었다. MR 댐퍼는 전단모드를 사용하도록 제안되었고 빙햄모델을 이용하여 최설설계를 진행하였다. 이 과정에서 멀티코일이 댐핑력을 높이기 위해 적용되었고 최적화된 구조를 찾아내기 위하여 APDL을 이용하여 최적설계가 수행되었다. 이 후 최적의 수치 값들을 통해 제작하여 실험을 수행하였다. 이 때 슬라이딩모드 제어기를 적용하여 시뮬레이션과 제어실험을 모두 수행하였다. 실험의 결과로부터 MR 댐퍼가 세탁기의 진동제어를 위한 요구 댐핑력을 만족시켜줌을 확인하였다.

  • PDF

DESIGN OPTIMIZATION OF AUTOMOTIVE LOCK-UP CLUTCHES WITH DAMPER SPRINGS USING SIMULATED ANNEALING, FEM, AND B-SPLINE CURVES

  • Kim, C.;Yoon, J.W.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.599-603
    • /
    • 2007
  • An efficient optimum design process has been developed and applied to systematically design a lock-up clutch system for a torque converter used in an automatic transmission. A simulated annealing algorithm was applied to determine the parameters of the compressive helical damper springs in the clutch. The determination of the number, location, a number of turns, and deflection of damper springs plays an important role in reducing vibration and noise in the lock-up system. Next, FE-based shape optimization was coded to find the shape of the clutch disk that would satisfy the strength, noise and vibration requirements. Using the optimum code, parametric studies were performed to see how spring diameters and frequencies of clutch systems changed as the damper spring traveling angles and the torques were varied. Based on the optimum results, five different designs for clutches with different springs were fabricated and vibration analyses and tests were conducted to validate the accuracy of the proposed method. Results from the two methods show a good correlation.

Application of machine learning in optimized distribution of dampers for structural vibration control

  • Li, Luyu;Zhao, Xuemeng
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.679-690
    • /
    • 2019
  • This paper presents machine learning methods using Support Vector Machine (SVM) and Multilayer Perceptron (MLP) to analyze optimal damper distribution for structural vibration control. Regarding different building structures, a genetic algorithm based optimization method is used to determine optimal damper distributions that are further used as training samples. The structural features, the objective function, the number of dampers, etc. are used as input features, and the distribution of dampers is taken as an output result. In the case of a few number of damper distributions, multi-class prediction can be performed using SVM and MLP respectively. Moreover, MLP can be used for regression prediction in the case where the distribution scheme is uncountable. After suitable post-processing, good results can be obtained. Numerical results show that the proposed method can obtain the optimized damper distributions for different structures under different objective functions, which achieves better control effect than the traditional uniform distribution and greatly improves the optimization efficiency.

최적화를 통한 토크 컨버터 댐퍼 스프링 설계 자동화에 관한 연구 (Design Automization for Torque Converter Damper Spring Using Optimization)

  • 박병건;황길언;김재정;장재덕
    • 한국CDE학회논문집
    • /
    • 제12권3호
    • /
    • pp.163-170
    • /
    • 2007
  • A torque converter, connected to a transmission/transaxle input shaft, connects, multiplies and interrupts the flow of engine torque into the transmission. Damper springs are usually equipped in a torque converter to convert stably the torque power supplied from engine. Damper Springs generally have the most flexible design variables among vehicle transmission parts, so that they could be effective design factors to improve the entire vehicle's performance. Damper spring, however, has geometric complexity after it equipped in a torque converter. For that reason, modeling a damper spring requires expert's knowledge to determine many design parameters and satisfy the functional requirements at the same time. In this paper, we introduce an optimum design method applied in detailed-design stage to reduce design process and financial loss caused by adequate design. Many design variables have to be classified and structuralized for Optimization. This also could make designer concentrate on functional requirements of damper spring, not on design possibility. In addition, modeling an assembled spring has technical restriction with primitives of the current major CAD solutions because of complexity of assembled spring shape. Thus, one of modeling solution presented in this paper since detailed and exact modeling is important for CAE or DMU.