• Title/Summary/Keyword: damaged building

Search Result 362, Processing Time 0.022 seconds

Simulation of cyclic response of precast concrete beam-column joints

  • Adibi, Mahdi;Talebkhah, Roozbeh;Yahyaabadi, Aliakbar
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.223-236
    • /
    • 2019
  • Experience of previous earthquakes shows that a considerable portion of concrete precast buildings sustain relatively large damages especially at the beam-column joints where the damages are mostly caused by bar slippage. Precast concrete buildings have a kind of discontinuity in their beam-column joints, so reinforcement details in this area is too important and have a significant effect on the seismic behavior of these structures. In this study, a relatively simple and efficient nonlinear model is proposed to simulate pre- and post-elastic behavior of the joints in usual practice of precast concrete building. In this model, beam and column components are represented by linear elastic elements, dimensions of the joint panel are defined by rigid elements, and effect of slip is taken into account by a nonlinear rotational spring at the end of the beam. The proposed method is validated by experimental results for both internal and external joints. In addition, the seismic behavior of the precast building damaged during Bojnord earthquake 13 May 2017, is investigated by using the proposed model for the beam-column joints. Damage unexpectedly inducing the precast building in the moderate Bojnord earthquake may confirm that bearing capacity of the precast building was underestimated without consideration of joint behavior effect.

A two-step approach for joint damage diagnosis of framed structures using artificial neural networks

  • Qu, W.L.;Chen, W.;Xiao, Y.Q.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.581-595
    • /
    • 2003
  • Since the conventional direct approaches are hard to be applied for damage diagnosis of complex large-scale structures, a two-step approach for diagnosing the joint damage of framed structures is presented in this paper by using artificial neural networks. The first step is to judge the damaged areas of a structure, which is divided into several sub-areas, using probabilistic neural networks with natural Frequencies Shift Ratio inputs. The next step is to diagnose the exact damage locations and extents by using the Radial Basis Function (RBF) neural network with the second Element End Strain Mode of the damaged sub-area input. The results of numerical simulation show that the proposed approach could diagnose the joint damage of framed structures induced by earthquake action effectively and has reliable anti-jamming abilities.

Locating the damaged storey of a building using distance measures of low-order AR models

  • Xing, Zhenhua;Mita, Akira
    • Smart Structures and Systems
    • /
    • v.6 no.9
    • /
    • pp.991-1005
    • /
    • 2010
  • The key to detecting damage to civil engineering structures is to find an effective damage indicator. The damage indicator should promptly reveal the location of the damage and accurately identify the state of the structure. We propose to use the distance measures of low-order AR models as a novel damage indicator. The AR model has been applied to parameterize dynamical responses, typically the acceleration response. The premise of this approach is that the distance between the models, fitting the dynamical responses from damaged and undamaged structures, may be correlated with the information about the damage, including its location and severity. Distance measures have been widely used in speech recognition. However, they have rarely been applied to civil engineering structures. This research attempts to improve on the distance measures that have been studied so far. The effect of varying the data length, number of parameters, and other factors was carefully studied.

A Study on Facilities Damage Characteristics Caused by Forest Fire in Goseong-Gun (고성산불로 인한 시설물피해특성 연구)

  • Yeom, Chanho;Lee, Si-young;Park, Houngsek;Kwon, Chungeun
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.469-478
    • /
    • 2019
  • Purpose: In this studies we examine the facilities damage characteristics caused by forest fire. Therefore, we surveyed damaged facilities from forest fire which was occurred on Goseong-Gun on march 28 in 2019.(damaged areas was 40ha) The types of facilities uses were house, public facility, warehouse and so on. 17 facilities were destroyed. The purpose of this study was to for establishing a disaster safety village in rural areas where damage from a similar type of disaster occurs repeatedly by conducting the consciousness survey targeting at experts and disaster safety officials in a local government. Method: We surveyed meteorological factors(temperature, wind speed, wind direction, humidity) per a minute for analyzing weather condition on Goseong-Gun when forest fire was occurred, spread and extinguished. And we surveyed forest fire risk factors(a slope degree, a slope direction, a geographical feature, a distance between forest and facility, main species, the existence of crown fire ignition, the direction of facility, the main material of building) around 10 damaged facilities. Finally, we analyzed damage pattern of facilities using meteorological factor and forest fire reisk fator Result: The weather condition of Kanseonng AWS (No.517) was high temperature, arid and strong wind, when the forest fire was occurred and spread. An average wind speed was 4.1m/s and the maximum wind speed was 11.6m/s. The main direction of wind was W(225~315°). Damaged facilities were located on the steep slope area and on the mountaintop. The forest density around facilities was high and main species was korean red pine. The crown fire was occurred in the forest around damaged facilities. The average distance was 13.5m from forest to facilities. When the main matarial of building was made by fire resistance materials (for example, rainforced concrete), the damage was slightly. on the other hand, when by flammable material (for example, a Sandwich Panel), the facilities were totally destroyed Conclusion: The results of this research which were the thinning around house, making a safety distance, the improvement of main material of building and etc, will be helpful for establishing a counter measure for a forest fire prevention of facilities in wild land urban interface

Investigation of effects of twin excavations effects on stability of a 20-storey building in sand: 3D finite element approach

  • Hemu Karira;Dildar Ali Mangnejo;Aneel Kumar;Tauha Hussain Ali;Syed Naveed Raza Shah
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.427-443
    • /
    • 2023
  • Across the globe, rapid urbanization demands the construction of basements for car parking and sub way station within the vicinity of high-rise buildings supported on piled raft foundations. As a consequence, ground movements caused by such excavations could interfere with the serviceability of the building and the piled raft as well. Hence, the prediction of the building responses to the adjacent excavations is of utmost importance. This study used three-dimensional numerical modelling to capture the effects of twin excavations (final depth of each excavation, He=24 m) on a 20-storey building resting on (4×4) piled raft. Because the considered structure, pile foundation, and soil deposit are three-dimensional in nature, the adopted three-dimensional numerical modelling can provide a more realistic simulation to capture responses of the system. The hypoplastic constitutive model was used to capture soil behaviour. The concrete damaged plasticity (CDP) model was used to capture the cracking behaviour in the concrete beams, columns and piles. The computed results revealed that the first excavation- induced substantial differential settlement (i.e., tilting) in the adjacent high-rise building while second excavation caused the building tilt back with smaller rate. As a result, the building remains tilted towards the first excavation with final value of tilting of 0.28%. Consequently, the most severe tensile cracking damage at the bottom of two middle columns. At the end of twin excavations, the building load resisted by the raft reduced to half of that the load before the excavations. The reduced load transferred to the piles resulting in increment of the axial load along the entire length of piles.

Analysis of a damaged industrial hall subjected to the effects of fire

  • Kmet, Stanislav;Tomko, Michal;Demjan, Ivo;Pesek, Ladislav;Priganc, Sergej
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.757-781
    • /
    • 2016
  • The results of diagnostics and analysis of an industrial hall located on the premises of a thermal power plant severely damaged by fire are presented in the paper. The comprehensive failure-related diagnostics, non-destructive and destructive tests of steel and concrete materials, geodetic surveying of selected structural members, numerical modelling, static analysis and reliability assessment were focused on two basic goals: The determination of the current technical condition of the load bearing structure and the assessment of its post fire resistance as well as assessing the degree of damage and subsequent design of reconstruction measures and arrangements which would enable the safe and reliable use of the building. The current mechanical properties of the steel material obtained from the tests and measured geometric characteristics of the structural members with imperfections were employed in finite element models to study the post-fire behaviour of the structure. In order to compare the behaviour of the numerically modelled steel roof truss, subjected to the effects of fire, with the real post-fire response of the damaged structure theoretically obtained resistance, critical temperature and the time at which the structure no longer meets the required reliability criteria under its given loading are compared with real values. A very good agreement between the simulated results and real characteristics of the structure after the fire was observed.

Pest control managements for preservation of wooden cultural properties (목조문화재의 원형보존을 위한 충해 방제방안)

  • Lee, Kyu-Sik;Jeong, So-Young;Chung, Yong-Jae
    • 보존과학연구
    • /
    • s.21
    • /
    • pp.5-55
    • /
    • 2000
  • The cultural properties are damaged by various causes according to the characteristics of material, the condition of preservation, and the period of time. Especially, biodeterioration makes lots of damages in organic properties than inorganic ones. The damages of wooden cultural properties by insects usually are caused by the three orders; Isoptera, Coleoptera, and Hymenoptera. As the result of investigation on the state of 141 buildings of wooden cultural properties in 1999, some of them were damaged by many kinds off actors; wasp, powder post beetle, cigarette beetle, termite, decay, and physical cracking. And it was found that the patterns of damages were related to species-specific habits of insects. There are several methods of pest control for the prevention of wooden cultural properties from damages caused by insects. Those are as follows; physical control, chemical control, biological control, and integrated pest management. When insects and fungi were detected at the wooden buildings, the fumigation is best treatment to stop biodeterioration. And then, wood materials also need to be treated with insecticidal and antiseptic chemicals to avoid a reinfestation, because the fumigant is volatile. The six commercial chemicals which are applied to the insecticidal and antiseptic treatment of wooden cultural properties were purchased to test their abilities. According to the comparative results of efficacy of them in laboratory, chemical D showed excellent efficacy in all items, including antiseptic and termiticidal items. The goal of these pest controls is to protect wooden buildings from insects and microorganisms. The most effective method used currently is chemical control(fumigation, insecticidal and anticeptic chemical treatment), but it has to be treated periodically to control pest effectively. Recently environmentally-friendly control methods such as bait system or biological treatments are replacing traditional barrier treatments using large amounts of chemicals. Especially, termite is a social insect which makes a colony. Although a building with fumigation treatment is safe for a while, once attacked building has a risk of damage by reinfestation of termite. Therefore, to control termites from damaged building, the entire colony including reproductives(queen and king) and larvae around buildings must beeliminated. Bait system can be used as a preventive measure in early detection of them through termites colony monitoring and baiting. It would be the most effective for termite control if bait system would be used together with the chemical controls.

  • PDF

Quantitative Evaluations of Deep Learning Models for Rapid Building Damage Detection in Disaster Areas (재난지역에서의 신속한 건물 피해 정도 감지를 위한 딥러닝 모델의 정량 평가)

  • Ser, Junho;Yang, Byungyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.381-391
    • /
    • 2022
  • This paper is intended to find one of the prevailing deep learning models that are a type of AI (Artificial Intelligence) that helps rapidly detect damaged buildings where disasters occur. The models selected are SSD-512, RetinaNet, and YOLOv3 which are widely used in object detection in recent years. These models are based on one-stage detector networks that are suitable for rapid object detection. These are often used for object detection due to their advantages in structure and high speed but not for damaged building detection in disaster management. In this study, we first trained each of the algorithms on xBD dataset that provides the post-disaster imagery with damage classification labels. Next, the three models are quantitatively evaluated with the mAP(mean Average Precision) and the FPS (Frames Per Second). The mAP of YOLOv3 is recorded at 34.39%, and the FPS reached 46. The mAP of RetinaNet recorded 36.06%, which is 1.67% higher than YOLOv3, but the FPS is one-third of YOLOv3. SSD-512 received significantly lower values than the results of YOLOv3 on two quantitative indicators. In a disaster situation, a rapid and precise investigation of damaged buildings is essential for effective disaster response. Accordingly, it is expected that the results obtained through this study can be effectively used for the rapid response in disaster management.

Risk evaluation of steel frames with welded connections under earthquake

  • Song, Jianlin;Ellingwood, Bruce R.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.663-672
    • /
    • 2001
  • Numerous failures in welded connections in steel moment-resisting building frames (SMRF) were observed when buildings were inspected after the 1994 Northridge Earthquake. These observations raised concerns about the effectiveness of such frames for resisting strong earthquake ground motions. The behavior of SMRFs during an earthquake must be assessed using nonlinear dynamic analysis, and such assessments must permit the deterioration in connection strength to capture the behavior of the frame. The uncertainties that underlie both structural and dynamic loading also need to be included in the analysis process. This paper describes the analysis of one of approximately 200 SMRFs that suffered damage to its welded beam-to-column connections from the Northridge Earthquake is evaluated. Nonlinear static and dynamic analysis of this SMRF in the time domain is performed using ground motions representing the Northridge Earthquake. Subsequently, a detailed uncertainty analysis is conducted for the building using an ensemble of earthquake ground motions. Probability distributions for deformation-related limit states, described in terms of maximum roof displacement or interstory drift, are constructed. Building fragilities that are useful for condition assessment of damaged building structures and for performance-based design are developed from these distributions.

Seismic Performance Evaluation of Unreinforced Masonry Buildings Retrofitted by Strengthening External Walls (외부벽체 강도증진형 보강이 적용된 비보강 조적조 건물의 내진성능평가)

  • Seol, Yun Jeong;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.77-86
    • /
    • 2020
  • Nonlinear static analysis and preliminary evaluation were performed in this study to evaluate the seismic performance of unreinforced masonry buildings subjected to various soil conditions based on the revised Korean Building Code. Preliminary evaluation scores and nonlinear static analyses indicated that all buildings were susceptible to collapse and did not reach their target performance. Therefore, retrofit of those building models was carried out through a systematic procedure to determine areas to be strengthened. It was possible to make most building models satisfy performance objectives through the reinforcement alone of damaged external shear walls. However, the application of a preliminary evaluation procedure to retrofit design was found to be too conservative because all the retrofitted building models verified with nonlinear static analysis failed to satisfy performance objectives. Therefore, it is possible to economically retrofit unreinforced masonry buildings through the fortification of external walls if a simple evaluation procedure that can efficiently specify vulnerable parts is developed.