• Title/Summary/Keyword: damage value

Search Result 1,583, Processing Time 0.031 seconds

Application of Critical Damage Value to Continuous Drawing Process using FEM (연속 인발공정에서 유한요소법을 이용한 Critical Damage Value 의 적용)

  • 박동인;김병민;고대철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.291-295
    • /
    • 2003
  • The occurrence of ductile fracture is the working limit of many metal forming processes. It is necessary to predict the criteria and to apply the condition in a process design. Over the years. the way for clarifying conditions have been studied and presented. However such a way needs lots of experiments and analysis. In this study, in order to determine the critical damage value of a used material Cu 4N, it was performed a tensile test and FEM analysis by using DEFORM 2D. For applying the obtained critical damage value it was also performed a upsetting test by using DEFORM 2D. The way of determining a critical damage value which is presented in this study will make possible to find easily it which is one of the working limit factor. And the way of determining a critical damage value will make possible to find in multi-pass drawing process.

  • PDF

Electrical signal characteristics of conductive asphalt concrete in the process of fatigue cracking

  • Yang, Qun;Li, Xu;Wang, Ping;Zhang, Hong-Wei
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.469-477
    • /
    • 2014
  • As a kind of intelligent materials, conductive asphalt concrete has a broad application prospect including melting ice and snow on the pavement, closing cracks in asphalt concrete, sensing pavement damage, and so on. Conductive pavement will be suffered from fatigue failure as conventional pavement in the process of service, and this fatigue damage of internal structure can be induced by electrical signal output. The characteristics of electrical signal variation of conductive asphalt concrete in the process of fatigue cracking were researched in this paper. The whole process was clearly divided into three stages according to resistance changes, and the development of fatigue damage wasn't obvious in stage I and stage II, while in stage III, the synchronicity between the resistance and damage began to appear. Thus, fatigue damage variable D and initial damage value $D_0$ represented by the functions of resistance were introduced in stage III. After calculating the initial damage value $D_0$ under different stress levels, it was concluded that the initial damage value $D_0$ had no noticeable change, just ranged between 0.24 and 0.25. This value represented a critical point which could be used to inform the repair time of early fatigue damage in the conductive asphalt pavement.

A damage localization method based on the singular value decomposition (SVD) for plates

  • Yang, Zhi-Bo;Yu, Jin-Tao;Tian, Shao-Hua;Chen, Xue-Feng;Xu, Guan-Ji
    • Smart Structures and Systems
    • /
    • v.22 no.5
    • /
    • pp.621-630
    • /
    • 2018
  • Boundary effect and the noise robustness are the two crucial aspects which affect the effectiveness of the damage localization based on the mode shape measurements. To overcome the boundary effect problem and enhance the noise robustness in damage detection, a simple damage localization method is proposed based on the Singular Value Decomposition (SVD) for the mode shape of composite plates. In the proposed method, the boundary effect problem is addressed by the decomposition and reconstruction of mode shape, and the noise robustness in enhanced by the noise filtering during the decomposition and reconstruction process. Numerical validations are performed on plate-like structures for various damage and boundary scenarios. Validations show that the proposed method is accurate and effective in the damage detection for the two-dimensional structures.

Improvement of MFL sensing-based damage detection and quantification for steel bar NDE

  • Kim, Ju-Won;Park, Minsu;Kim, Junkyeong;Park, Seunghee
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.239-247
    • /
    • 2018
  • A magnetic flux leakage (MFL) method was applied to detect and quantify defects in a steel bar. A multi-channel MFL sensor head was fabricated using Hall sensors and magnetization yokes with permanent magnets. The MFL sensor head scanned a damaged specimen with five levels of defects to measure the magnetic flux density. A series of signal processing procedures, including an enveloping process based on the Hilbert transform, was performed to clarify the flux leakage signal. The objective damage detection of the enveloped signals was then analyzed by comparing them to a threshold value. To quantitatively analyze the MFL signal according to the damage level, five kinds of damage indices based on the relationship between the enveloped MFL signal and the threshold value were applied. Using the proposed damage indices and the general damage index for the MFL method, the detected MFL signals were quantified and analyzed relative to the magnitude of the damage increase.

Electrochemical Characteristics with Cavitation Amplitude Under Cavitation Erosion of 6061-T6 in Seawater (Al 6061-T6 합금의 해수 내 캐비테이션 진폭에 따른 캐비테이션-침식 조건하에서 전기화학적 특성)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.318-325
    • /
    • 2020
  • Generally, Al alloys of 5000 and 6000 series show excellent weldability, workability, and specific strength, and are widely used in ship building. A combined experiment via cavitation erosion and corrosion damage involving 6061-T6 Al alloy was performed using potentiodynamic polarization under cavitation erosion (hybrid experiments) with amplitude (cavitation strength). The corrosion current density was approximately 52-fold higher at 30 μm than under static conditions, suggesting that the amplitude greatly affected the damage. The degree of damage increased with increasing cavitation amplitude. After the hybrid experiment, the corrosion rate was compared according to the weight loss and damage depth, and the relationship between the two values was expressed as alpha value. The alpha (α) values at amplitudes of 5 μm, 10 μm and 30 μm were 5.11, 12.81 and 8.74, respectively, suggesting that the α value at 10 μm was greater than at 5 μm, and indicating local corrosion damage. However, the α value at 30 μm was smaller than that of 10 μm, which is attributed to higher damage via uniform corrosion than damage induced by local corrosion.

Comparative study on damage identification from Iso-Eigen-Value-Change contours and smeared damage model

  • Lakshmanan, N.;Raghuprasad, B.K.;Gopalakrishnan, N.;Sreekala, R.;Rama Rao, G.V.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.735-758
    • /
    • 2010
  • The paper proposes two methodologies for damage identification from measured natural frequencies of a contiguously damaged reinforced concrete beam, idealised with distributed damage model. The first method identifies damage from Iso-Eigen-Value-Change contours, plotted between pairs of different frequencies. The performance of the method is checked for a wide variation of damage positions and extents. The method is also extended to a discrete structure in the form of a five-storied shear building and the simplicity of the method is demonstrated. The second method is through smeared damage model, where the damage is assumed constant for different segments of the beam and the lengths and centres of these segments are the known inputs. First-order perturbation method is used to derive the relevant expressions. Both these methods are based on distributed damage models and have been checked with experimental program on simply supported reinforced concrete beams, subjected to different stages of symmetric and un-symmetric damages. The results of the experiments are encouraging and show that both the methods can be adopted together in a damage identification scenario.

Prediction of Crack Initiation and Its Application to the Design of Lead Screw Thread Rolling Process (Crack 발생 예측을 통한 Lead Screw 전조공정설계)

  • Shin, M.S.;Cha, S.H.;Kim, J.B.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.160-166
    • /
    • 2010
  • In this paper, the process parameters of thread rolling were designed based on the numerical analysis results. Firstly, the effective analysis conditions that guarantee the reliability of the analysis results were found. To find the effective analysis conditions, the analyses were carried out for various numbers of teeth. And then, the effects of the process parameters such as tool shape and temperature on the thread rolling performance were investigated. The formability in thread rolling process was evaluated in terms of Cockcroft-Latham damage value. In order to evaluate formability, Cockcroft-Latham damage value was normalized by the critical damage value which was obtained from the analysis of uniaxial tensile test. The analyses were carried out using DEFORM-3D. The results showed that the flank angle and crest round had an effect on the thread rolling load. It was also shown that temperature had significant effects on the effective strain distribution, rolling load, and damage. With the reduced formability of stainless steel at higher temperature, it was shown that the normalized damage values increased as the process temperature.

Damage detection of multi-storeyed shear structure using sparse and noisy modal data

  • Panigrahi, S.K.;Chakraverty, S.;Bhattacharyya, S.K.
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1215-1232
    • /
    • 2015
  • In the present paper, a method for identifying damage in a multi storeyed shear building structure is presented using minimum number of modal parameters of the structure. A damage at any level of the structure may lead to a major failure if the damage is not attended at appropriate time. Hence an early detection of damage is essential. The proposed identification methodology requires experimentally determined sparse modal data of any particular mode as input to detect the location and extent of damage in the structure. Here, the first natural frequency and corresponding partial mode shape values are used as input to the model and results are compared by changing the sensor placement locations at different floors to conclude the best location of sensors for accurate damage identification. Initially experimental data are simulated numerically by solving eigen value problem of the damaged structure with inclusion of random noise on the vibration characteristics. Reliability of the procedure has been demonstrated through a few examples of multi storeyed shear structure with different damage scenarios and various noise levels. Validation of the methodology has also been done using dynamic data obtained through experiment conducted on a laboratory scale steel structure.

Dyeability of Oxidative Permanent Hair Coloring Agents and the Damage of Hair (산화형 영구염모제 종류에 따른 염색성과 모발의 손상)

  • Jeong, Nam Young;Lim, Sun Nye;Choi, Chang Nam
    • Textile Coloration and Finishing
    • /
    • v.24 no.4
    • /
    • pp.305-312
    • /
    • 2012
  • In this study, we investigated the effects of oxidative permanent hair coloring agents on the dyeability and the damage of human hair. p-phenylenediamine and toluene-2.5-diamine sulfate were used as a hair coloring agent precursers. The degree of dyeability was checked by the change of CIELAB $L^*$ value according to dyeing time. And the damage of hair was evaluated by the tensile strength and morphological change of hair in SEM. When the hair was dyed, the CIELAB $L^*$ value was decreased with dyeing time regardless of the type of precursers. But when the hair was dyed after nutritional treatment, the CIELAB $L^*$ value showed lower level. This means that the nutritional treatment covers the scale of hair and protects the hair from the chemicals.

A Study on Fatigue Damage Modeling Using Back-Propagation Neural Networks (역전파신경회로망을 이용한 피로손상모델링에 관한 연구)

  • 조석수;장득열;주원식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.258-269
    • /
    • 1999
  • It is important to evaluate fatigue damage of in-service material in respect to assure safety and remaining fatigue life in structure and mechanical components under cyclic load . Fatigue damage is represented by mathematical modelling with crack growth rate da/dN and cycle ration N/Nf and is detected by X-ray diffraction and ultrasonic wave method etc. But this is estimated generally by single parameter but influenced by many test conditions The characteristics of it indicates fatigue damage has complex fracture mechanism. Therefore, in this study we propose that back-propagation neural networks on the basis of ration of X-ray half-value breath B/Bo, fractal dimension Df and fracture mechanical parameters can construct artificial intelligent networks estimating crack growth rate da/dN and cycle ratio N/Nf without regard to stress amplitude Δ $\sigma$.

  • PDF