• 제목/요약/키워드: damage scale model

검색결과 337건 처리시간 0.017초

A model for damage analysis of concrete

  • Cao, Vui V.;Ronagh, Hamid R.
    • Advances in concrete construction
    • /
    • 제1권2호
    • /
    • pp.187-200
    • /
    • 2013
  • The damage level in structures (global scale), elements (intermediate scale) and sections (local scale) can be evaluated using a single parameter called the "Damage Index". Part of the damage attributed to the local scale relates to the damage sustained by the materials of which the section is made. This study investigates the damage of concrete subjected to monotonic compressive loading using four different damage models - one proposed here for the first time and three other well-known models. The analytical results show that the proposed model is promising yet simple and effective for evaluating the damage of concrete. The proposed damage model of concrete with its promising characteristics indicated, appears to be a useful tool in the damage assessment of structures made of concrete.

A wavelet finite element-based adaptive-scale damage detection strategy

  • He, Wen-Yu;Zhu, Songye;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • 제14권3호
    • /
    • pp.285-305
    • /
    • 2014
  • This study employs a novel beam-type wavelet finite element model (WFEM) to fulfill an adaptive-scale damage detection strategy in which structural modeling scales are not only spatially varying but also dynamically changed according to actual needs. Dynamical equations of beam structures are derived in the context of WFEM by using the second-generation cubic Hermite multiwavelets as interpolation functions. Based on the concept of modal strain energy, damage in beam structures can be detected in a progressive manner: the suspected region is first identified using a low-scale structural model and the more accurate location and severity of the damage can be estimated using a multi-scale model with local refinement in the suspected region. Although this strategy can be implemented using traditional finite element methods, the multi-scale and localization properties of the WFEM considerably facilitate the adaptive change of modeling scales in a multi-stage process. The numerical examples in this study clearly demonstrate that the proposed damage detection strategy can progressively and efficiently locate and quantify damage with minimal computation effort and a limited number of sensors.

Evaluating damage scale model of concrete materials using test data

  • Mohammed, Tesfaye A.;Parvin, Azadeh
    • Advances in concrete construction
    • /
    • 제1권4호
    • /
    • pp.289-304
    • /
    • 2013
  • A reliable concrete constitutive material model is critical for an accurate numerical analysis simulation of reinforced concrete structures under extreme dynamic loadings including impact or blast. However, the formulation of concrete material model is challenging and entails numerous input parameters that must be obtained through experimentation. This paper presents a damage scale analytical model to characterize concrete material for its pre- and post-peak behavior. To formulate the damage scale model, statistical regression and finite element analysis models were developed leveraging twenty existing experimental data sets on concrete compressive strength. Subsequently, the proposed damage scale analytical model was implemented in the finite element analysis simulation of a reinforced concrete pier subjected to vehicle impact loading and the response were compared to available field test data to validate its accuracy. Field test and FEA results were in good agreement. The proposed analytical model was able to reliably predict the concrete behavior including its post-peak softening in the descending branch of the stress-strain curve. The proposed model also resulted in drastic reduction of number of input parameters required for LS-DYNA concrete material models.

Reconstruction of a near-surface tornado wind field from observed building damage

  • Luo, Jianjun;Liang, Daan;Weiss, Christopher
    • Wind and Structures
    • /
    • 제20권3호
    • /
    • pp.389-404
    • /
    • 2015
  • In this study, residential building damage states observed from a post-tornado damage survey in Joplin after a 2011 EF 5 tornado were used to reconstruct the near-surface wind field. It was based on well-studied relationships between Degrees of Damage (DOD) of building and wind speeds in the Enhanced Fujita (EF) scale. A total of 4,166 one- or two-family residences (FR12) located in the study area were selected and their DODs were recorded. Then, the wind speeds were estimated with the EF scale. The peak wind speed profile estimated from damage of buildings was used to fit a translating analytical vortex model. Agreement between simulated peak wind speeds and observed damages confirms the feasibility of using post-tornado damage surveys for reconstructing the near-surface wind field. In addition to peak wind speeds, the model can create the time history of wind speed and direction at any given point, offering opportunity to better understand tornado parameters and wind field structures. Future work could extend the method to tornadoes of different characteristics and therefore improve model's generalizability.

Enhanced remote-sensing scale for wind damage assessment

  • Luo, Jianjun;Liang, Daan;Kafali, Cagdas;Li, Ruilong;Brown, Tanya M.
    • Wind and Structures
    • /
    • 제19권3호
    • /
    • pp.321-337
    • /
    • 2014
  • This study has developed an Enhanced Remote-Sensing (ERS) scale to improve the accuracy and efficiency of using remote-sensing images of residential building to predict their damage conditions. The new scale, by incorporating multiple damage states observable on remote-sensing imagery, substantially reduces measurement errors and increases the amount of information retained. A ground damage survey was conducted six days after the Joplin EF 5 tornado in 2011. A total of 1,400 one- and two-family residences (FR12) were selected and their damage states were evaluated based on Degree of Damage (DOD) in the Enhanced Fujita (EF) scale. A subsequent remote-sensing survey was performed to rate damages with the ERS scale using high-resolution aerial imagery. Results from Ordinary Least Square regression indicate that ERS-derived damage states could reliably predict the ground level damage with 94% of variance in DOD explained by ERS. The superior performance is mainly because ERS extracts more information. The regression model developed can be used for future rapid assessment of tornado damages. In addition, this study provides strong empirical evidence for the effectiveness of the ERS scale and remote-sensing technology for assessment of damages from tornadoes and other wind events.

A plastic strain based statistical damage model for brittle to ductile behaviour of rocks

  • Zhou, Changtai;Zhang, Kai;Wang, Haibo;Xu, Yongxiang
    • Geomechanics and Engineering
    • /
    • 제21권4호
    • /
    • pp.349-356
    • /
    • 2020
  • Rock brittleness, which is closely related to the failure modes, plays a significant role in the design and construction of many rock engineering applications. However, the brittle-ductile failure transition is mostly ignored by the current statistical damage constitutive model, which may misestimate the failure strength and failure behaviours of intact rock. In this study, a new statistical damage model considering rock brittleness is proposed for brittle to ductile behaviour of rocks using brittleness index (BI). Firstly, the statistical constitutive damage model is reviewed and a new statistical damage model considering failure mode transition is developed by introducing rock brittleness parameter-BI. Then the corresponding damage distribution parameters, shape parameter m and scale parameter F0, are expressed in terms of BI. The shape parameter m has a positive relationship with BI while the scale parameter F0 depends on both BI and εe. Finally, the robustness and correctness of the proposed damage model is validated using a set of experimental data with various confining pressure.

Adaptive-scale damage detection strategy for plate structures based on wavelet finite element model

  • He, Wen-Yu;Zhu, Songye
    • Structural Engineering and Mechanics
    • /
    • 제54권2호
    • /
    • pp.239-256
    • /
    • 2015
  • An adaptive-scale damage detection strategy based on a wavelet finite element model (WFEM) for thin plate structures is established in this study. Equations of motion and corresponding lifting schemes for thin plate structures are derived with the tensor products of cubic Hermite multi-wavelets as the elemental interpolation functions. Sub-element damages are localized by using of the change ratio of modal strain energy. Subsequently, such damages are adaptively quantified by a damage quantification equation deduced from differential equations of plate structure motion. WFEM scales vary spatially and change dynamically according to actual needs. Numerical examples clearly demonstrate that the proposed strategy can progressively locate and quantify plate damages. The strategy can operate efficiently in terms of the degrees-of-freedom in WFEM and sensors in the vibration test.

Predicting ground-based damage states from windstorms using remote-sensing imagery

  • Brown, Tanya M.;Liang, Daan;Womble, J. Arn
    • Wind and Structures
    • /
    • 제15권5호
    • /
    • pp.369-383
    • /
    • 2012
  • Researchers have recently begun using high spatial resolution remote-sensing data, which are automatically captured and georeferenced, to assess damage following natural and man-made disasters, in addition to, or instead of employing the older methods of walking house-to-house for surveys, or photographing individual buildings from an airplane. This research establishes quantitative relationships between the damage states observed at ground-level, and those observed from space using high spatial resolution remote-sensing data, for windstorms, for individual site-built one- or two-family residences (FR12). "Degrees of Damage" (DOD) from the Enhanced Fujita (EF) Scale were determined for ground-based damage states; damage states were also assigned for remote-sensing imagery, using a modified version of Womble's Remote-Sensing (RS) Damage Scale. The preliminary developed model can be used to predict the ground-level damage state using remote-sensing imagery, which could significantly lessen the time and expense required to assess the damage following a windstorm.

액화수소 충전스테이션에서 VCE로 인한 피해영향평가에 관한 연구 (A Study on the Evaluations of Damage Impact due to VCE in Liquid Hydrogen Charging Station)

  • 이수지;천영우;이익모;황용우
    • 한국가스학회지
    • /
    • 제21권5호
    • /
    • pp.56-63
    • /
    • 2017
  • 전세계적으로 수소 충전 스테이션 구축에 많은 투자와 지원을 하고 있는 실정이다. 그러나 수소는 폭발범위가 넓고 확산이 빠른 기체이다. 본 연구에서는 액화수소를 취급하는 소규모~대규모 충전스테이션을 대상으로, 사고시 발생하는 VCE로 인한 피해영향범위를 산출하고, 프로빗 모델을 통해 주변의 인적, 물적 피해를 예측하였다. 더불어, 벤트스택 끝단에서 발생 가능한 Jet fire를 시나리오로 선정하여 최적 높이를 설정하였다. 피해영향범위는 관심과압 6.9kPa을 기준으로 하여, 소규모 저장시설의 경우 8.24m, 중규모 14.10m, 대규모 22.38m이다. 폐출혈로 인한 인체 피해는 소규모와 중규모가 각각 50m, 대규모 100m였으며, 구조물 손상에 따른 피해는 소규모 200m, 중규모 300m 및 대규모 500m이다. 벤트스택의 최적높이는 소규모 4.7m, 중규모 8.8m 및 대규모 16.9m이다.

유한요소기반 다중스케일 연성파손모사 기법을 이용한 원주방향 균열이 존재하는 탄소강 실배관의 파손예측 및 검증 (Finite Element Based Multi-Scale Ductile Failure Simulation of Full-Scale Pipes with a Circumferential Crack in a Low Carbon Steel)

  • 한재준;배경동;김윤재;김종현;김낙현
    • 대한기계학회논문집A
    • /
    • 제38권7호
    • /
    • pp.727-734
    • /
    • 2014
  • 본 논문은 유한요소 기반 다중스케일 연성파손모사 기법을 이용하여 결함이 존재하는 실배관의 파괴거동을 예측한다. 수정응력 파괴변형률 모델을 손상기준으로 선정하고 유한요소 손상해석을 통해 균열진전을 모사한다. 기준식의 결정에는 인장시험과 파괴인성시험 결과만이 요구되며 온도 $288^{\circ}C$ SA333 Gr. 6 탄소강에 적용하여 결과를 제시하였다. 요소크기-의존성 임계손상모델을 도입하여 손상해석의 수치해석적인 불안정성을 개선하였다. 본 연구에서 제안하는 가상시험법의 검증을 위해 미국 바텔 연구소에서 수행한 실배관 실험결과와 예측결과를 비교한다.