• Title/Summary/Keyword: damage resilience

검색결과 81건 처리시간 0.024초

Seismic performance of a resilient low-damage base isolation system under combined vertical and horizontal excitations

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Yang, T.Y.;Takewaki, Izuru;Mohammadhasani, Mohammad
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.383-397
    • /
    • 2018
  • Traditional base isolation systems focus on isolating the seismic response of a structure in the horizontal direction. However, in regions where the vertical earthquake excitation is significant (such as near-fault region), a traditional base-isolated building exhibits a significant vertical vibration. To eliminate this shortcoming, a rocking-isolated system named Telescopic Column (TC) is proposed in this paper. Detailed rocking and isolation mechanism of the TC system is presented. The seismic performance of the TC is compared with the traditional elastomeric bearing (EB) and friction pendulum (FP) base-isolated systems. A 4-storey reinforced concrete moment-resisting frame (RC-MRF) is selected as the reference superstructure. The seismic response of the reference superstructure in terms of column axial forces, base shears, floor accelerations, inter-storey drift ratios (IDR) and collapse margin ratios (CMRs) are evaluated using OpenSees. The results of the nonlinear dynamic analysis subjected to multi-directional earthquake excitations show that the superstructure equipped with the newly proposed TC is more resilient and exhibits a superior response with higher margin of safety against collapse when compared with the same superstructure with the traditional base-isolation (BI) system.

Application of self-centering wall panel with replaceable energy dissipation devices in steel frames

  • Chao, Sisi;Wu, Hanheng;Zhou, Tianhua;Guo, Tao;Wang, Chenglong
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.265-279
    • /
    • 2019
  • The self-centering capacity and energy dissipation performance have been recognized critically for increasing the seismic performance of structures. This paper presents an innovative steel moment frame with self-centering steel reinforced concrete (SRC) wall panel incorporating replaceable energy dissipation devices (SF-SCWD). The self-centering mechanism and energy dissipation mechanism of the structure were validated by cyclic tests. The earthquake resilience of wall panel has the ability to limit structural damage and residual drift, while the energy dissipation devices located at wall toes are used to dissipate energy and reduce the seismic response. The oriented post-tensioned strands provide additional overturning force resistance and help to reduce residual drift. The main parameters were studied by numerical analysis to understand the complex structural behavior of this new system, such as initial stress of post-tensioning strands, yield strength of damper plates and height-width ratio of the wall panel. The static push-over analysis was conducted to investigate the failure process of the SF-SCWD. Moreover, nonlinear time history analysis of the 6-story frame was carried out, which confirmed the availability of the proposed structures in permanent drift mitigation.

Urban Flood Vulnerability Assessment Based on FCDM and PSR Framework

  • Quan Feng;Seong Cheol Shin;Wonjoon Wang;Junhyeong Lee;Kyunghun Kim;Hung Soo Kim
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.181-181
    • /
    • 2023
  • Flood is a major threat to human society, and scientific assessment of flood risk in human living areas is an important task. In this study, two different methods were used to evaluate the flood in Ulsan City, and the results were comprehensively compared and analyzed. Based on the fuzzy mathematics and VIKOR method of the multi-objective decision system, similar evaluation results were obtained in the study area. The results show that due to the large number of rivers in Ulsan City and the relatively high exposure index, the whole city faces a high risk of flooding. However, fuzzy mathematics theory pays more attention to the negative impact of floods on people, and the adaptability in the Nam-gu District is lower. In contrast, the VIKOR method pays more attention to the positive role of the economy and population in flood protection, and thus obtains a higher score. Both approaches demonstrate that the city of Ulsan faces a high risk of flooding and that its citizens and policymakers need to invest in preventing flood damage.

  • PDF

라이프라인 시스템 상호의존성을 고려한 기능 저하 평가 및 복구계획 분석 (Analysis of the Degraded Performance and Restoration Plan of Lfieline Systems Considering Interdependency in the Post-disaster)

  • 이슬비;박문서;이현수;황성주
    • 한국건설관리학회논문집
    • /
    • 제15권4호
    • /
    • pp.139-149
    • /
    • 2014
  • 재난 이후 라이프라인의 손상은 지역사회 내 공공서비스의 제공을 지연시켜 서비스를 필요로 하는 시설물로 피해를 확산시킬 수 있다. 이에 라이프라인의 정확한 피해 평가를 기반으로 한 신속한 라이프라인의 복구가 요구되고 있으나, 라이프라인 구성요소간의 복잡한 의존관계와 네트워크적 성격으로 인해 복구계획을 수립하는데 어려움이 따른다. 또한 라이프라인의 위험도 평가 및 영향력 분석과 같은 기존의 연구들 역시 라이프라인 구성요소 간의 상호작용을 확인하기에는 한계가 있다. 따라서 본 연구에서는 에이전트 기반 모델을 활용하여 라이프라인 구성요소가 전체 네트워크시스템에 발현하는 연쇄피해효과를 확인하고, 라이프라인 간 상호의존성을 고려한 라이프라인 기능회복 모델을 제시하고자 한다. 이를 통해 전체 네트워크에 파급효과가 큰 라이프라인 구성요소에 우선적으로 복구 자원을 할당할 수 있도록 지원하여, 라이프라인 서비스 공급 중단으로 인한 지역사회의 피해확산을 경감시킬 수 있을 것이라 기대된다.

A Study on the Shrinkage of Silk Fabric by $Ca(NO_3){_2}$ Solution

  • Choi, Se-Min;Shin, Yu-Ju;Kim, Jong-Jun;Jeon, Dong-Won
    • 패션비즈니스
    • /
    • 제13권3호
    • /
    • pp.136-148
    • /
    • 2009
  • The phenomenon of the shrinkage of silk fibers induced by inorganic salts including LiBr, $Ca(NO_3){_2}$, and $CaCl_2$, has been studied up to the present as one of the finishing methods of silk. It is expected that the shrinkage phenomenon may greatly contribute to the realization of the high sensibility of silk fibers. Especially the shrinkage enables the expression of three-dimensional appearance of silk fabrics along with the improvements in dimensional stability, resilience in stretching, and comfort. Numerous theoretical studies on the contraction phenomenon by $Ca(NO_3){_2}$ have been conducted so far. These studies have focused mostly on the silk fibers. It is difficult to find studies on silk fabrics. The negative aspects of the finishing are such as strength drop, yellowish discoloration, and fiber damage. These should also be considered as well as the positive aspects. In this study, the phenomenon of salt shrinkage is diversely reviewed by applying $Ca(NO_3){_2}$ solution for the silk fabrics as objects. The changes in the air permeability, thickness, and color were investigated with focus on the shrinkage of the silk fabrics according to the changes in treatment conditions. Some findings from this study are as follows: Within short period of time at the initiation of salt shrinkage, the salt shrinkage proceeds effectively. In the case of concentration of 47.4%, or 46.3% of $Ca(NO_3){_2}$ solution, appropriate treatment time seems to be 20seconds, or $2{\sim}8$minutes, respectively. Excessive shrinkage is obtained when lower liquor ratio is adopted. As a result, the condition is acting extremely disadvantageously against the thickness and yellow discoloration aspects.

Stochastic analysis of the rocking vulnerability of irregular anchored rigid bodies: application to soils of Mexico City

  • Ramos, Salvador;Arredondo, Cesar;Reinoso, Eduardo;Leonardo-Suarez, Miguel;Torres, Marco A.
    • Earthquakes and Structures
    • /
    • 제20권1호
    • /
    • pp.71-86
    • /
    • 2021
  • This paper focuses on the development and assessment of the expected damage for the rocking response of rigid anchored blocks, with irregular geometry and non-uniform mass distribution, considering the site conditions and the seismicity of Mexico City. The non-linear behavior of the restrainers is incorporated to evaluate the pure tension and tension-shear failure mechanisms. A probabilistic framework is performed covering a wide range of block sizes, slenderness ratios and eccentricities using physics-based ground motion simulation. In order to incorporate the uncertainties related to the propagation of far-field earthquakes with a significant contribution to the seismic hazard at study sites, it was simulated a set of scenarios using a stochastic summation methods of small-earthquakes records, considered as Empirical Green's Function (EGFs). As Engineering Demand Parameter (EDP), the absolute value of the maximum block rotation normalized by the body slenderness, as a function of the peak ground acceleration (PGA) is adopted. The results show that anchorages are more efficient for blocks with slenderness ratio between two and three, while slenderness above four provide a better stability when they are not restrained. Besides, there is a range of peak intensities where anchored blocks located in soft soils are less vulnerable with respect to those located in firm soils. The procedure used in here allows to take decisions about risk, reliability and resilience assessment of different types of contents, and it is easily adaptable to other seismic environments.

미래 메가시티의 복합재난과 범정부 차원의 대응 방향 (How to Respond to Complex Disasters on Future Megacities at the Government Level)

  • 문상준;조상근;정민섭;박상혁
    • 문화기술의 융합
    • /
    • 제7권1호
    • /
    • pp.211-215
    • /
    • 2021
  • 전 세계의 도시화율이 급증하여 메가시티의 수가 점차 증가하고 있다. 이와 더불어, 기후변화, 사회 발전 및 과학기술의 발전으로 인해 재난의 종류가 다양해지고, 피해 규모도 확대되고 있다. 특히, 메가시티는 1,000만 명 이상의 인구와 이들의 활동 공간이 초밀집·초연결·초융합되어 재난 발생 시 'n'차로 확대되어 피해가 가증되기 쉽다. 하지만, 메가시티는 한 나라의 정치, 경제, 문화 등의 중심지이다. 이로 인해, 메가시티에 복합재난이 발생한다면 국가안보차원에서의 위기로 발전될 수 있다. 따라서 메가시티가 예측능력, 복합대응능력, 신속대응능력 및 회복 탄력성을 갖출 수 있도록 범정부 차원의 노력을 집중할 필요가 있다.

Seismic behavior of coupled wall structure with innovative quickly replaceable coupling beams

  • Li, Yong;Yu, Haifeng;Liang, Xiaoyong;Yu, Jianjun;Li, Pengcheng;Wang, Wei;Wang, Qizhi
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.293-303
    • /
    • 2022
  • In order to improve the seismic resilience of coupled wall structure, coupling beam with fuse has been developed to reduce the post-earthquake damage. However, the fuses often have a build-up I-shaped section and are relatively heavy to be replaced. Moreover, the fuse and the beam segments are usually connected by bolts and it is time-consuming to replace the damaged fuse. For reducing the repair time and cost, a novel quickly replaceable coupling beam with buckling-restrained energy dissipaters is developed. The fuse of the proposed coupling beam consists of two chord members and bar-typed energy dissipaters placed at the corners of the fuse. In this way, the weight of the energy dissipater can be greatly reduced. The energy dissipaters and the chords are connected with hinge and it is convenient to take down the damaged energy dissipater. The influence of ratio of the length of coupling beam to the length of fuse on the seismic performance of the structure is also studied. The seismic performance of the coupled wall system with the proposed coupling beam is compared with the system with reinforced concrete coupling beams. Results indicated that the weight and post-earthquake repair cost of the proposed fuse can be reduced compared with the typical I-shaped fuse. With the increase of the ratio of the beam length to the fuse length, the interstory drift of the structure is reduced while the residual fuse chord rotation is increased.

Seismic behavior and design method of socket self-centering bridge pier with hybrid energy dissipation system

  • Guo, Mengqiang;Men, Jinjie;Fan, Dongxin;Shen, Yanli
    • Earthquakes and Structures
    • /
    • 제23권3호
    • /
    • pp.271-282
    • /
    • 2022
  • Seismic resisting self-centering bridge piers with high energy dissipation and negligible residual displacement after an earthquake event are focus topics of current structural engineering. The energy dissipation components of typical bridge piers are often relatively single; and exhibit a certain level of damage under earthquakes, leading to large residual displacements and low cumulative energy dissipation. In this paper, a novel socket self-centering bridge pier with a hybrid energy dissipation system is proposed. The seismic resilience of bridge piers can be improved through the rational design of annular grooves and rubber cushions. The seismic response was evaluated through the finite element method. The effects of rubber cushion thickness, annular groove depth, axial compression ratio, and lateral strength contribution ratio of rubber cushion on the seismic behavior of bridge piers are systematically studied. The results show that the annular groove depth has the greatest influence on the seismic performance of the bridge pier. Especially, the lateral strength contribution ratio of the rubber cushion mainly depends on the depth of the annular groove. The axial compression ratio has a significant effect on the ultimate bearing capacity. Finally, the seismic design method is proposed according to the influence of the above research parameters on the seismic performance of bridge piers, and the method is validated by an example. It is suggested that the range of lateral strength contribution ratio of rubber cushion is 0.028 ~ 0.053.

방호 패널의 구성 재료 및 설치 조건에 따른 내충격 특성에 관한 연구 (A Study on Impact Resistance Properties with Composition Materials and Installation Conditions of Protective Panel)

  • 석원균;김영선;이예찬;남정수;김규용
    • 한국건축시공학회지
    • /
    • 제23권6호
    • /
    • pp.715-726
    • /
    • 2023
  • 본 연구에서는 수소 충전소와 같은 폭발 가능성을 가진 구조물들의 안전 설계 방안으로 방호패널이 희생 부재로 설치되어 구조물의 직접적인 피해를 최소화하고 회복 탄력성을 가질 수 있어야 한다고 제시하였다. 이를 위해 비상체의 고속 충돌 상황에서 방호 패널이 구조물과 밀착 또는 이격 설치되었을 때 구조물이 받는 영향을 정량적으로 평가하는데 실험의 초점을 맞추고 있다. 실험 설계는 우수한 재현성을 위해 기존에 주로 사용한 콘크리트 구조부재 대신 강판을 사용하며, 철판 배면의 변형 차이를 통해 구조부재의 충격을 비교·분석하였다. 또한, 방호 부재의 이격재로 사용한 탄성체의 물성 변화와 방호부재 및 탄성체에 따른 충격파 전달 시간의 차이가 구조부재에 미치는 영향을 조사하였다.