• Title/Summary/Keyword: damage process

Search Result 2,730, Processing Time 0.029 seconds

A Study on Accelerated Fatigue Life Testing for Industrial Inverter (산업용 인버터의 가속 피로수명 평가에 관한 연구)

  • Lee, Sanghoon;Kim, Won-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.67-73
    • /
    • 2022
  • Industrial inverters are used in a variety of fields for electric power supply. They may be exposed to vibration and heat once they are installed. This study focused on a framework of accelerated life testing of an industrial inverter considering fatigue damage as the primary source of deterioration. Instead of analyzing detailed failure mechanisms and the product's vulnerability to them, the potential of fatigue failure is considered using the fatigue damage spectrum calculated from the environmental vibration signals. The acceleration and temperature data were gathered using field measurement and spectral analysis was conducted to calculate the vibration signal's power spectral density (PSD). The fatigue damage spectrum is then calculated from the input PSD data and is used to design an accelerated fatigue life testing. The PSD for the shaker table test is derived that has the equivalent fatigue damage to the original input signal. The tests were performed considering the combined effect of random vibration and elevated temperature, and the product passed all the planned tests. It was successfully demonstrated that the inverter used in this study could survive environmental vibration up to its guarantee period. The fatigue damage spectrum can effectively be used to design accelerated fatigue life testing.

A Probabilistic Model of Damage Propagation based on the Markov Process (마코프 프로세스에 기반한 확률적 피해 파급 모델)

  • Kim Young-Gab;Baek Young-Kyo;In Hoh-Peter;Baik Doo-Kwon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.8
    • /
    • pp.524-535
    • /
    • 2006
  • With rapid development of Internet technology, business management in an organization or an enterprise depends on Internet-based technology for the most part. Furthermore, as dependency and cohesiveness of network in the communication facilities are increasing, cyber attacks have been increased against vulnerable resource in the information system. Hence, to protect private information and computer resource, research for damage propagation is required in this situation. However the proposed traditional models present just mechanism for risk management, or are able to be applied to the specified threats such as virus or worm. Therefore, we propose the probabilistic model of damage propagation based on the Markov process, which can be applied to diverse threats in the information systems. Using the proposed model in this paper, we can predict the occurrence probability and occurrence frequency for each threats in the entire system.

Damage Assessment and Establishment of Damage Index for Reinforced Concrete Column (철근콘크리트기둥의 손상지표 설정과 손상도 평가)

  • Youn, IL-Ro;Kwon, Yong-Gil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.3
    • /
    • pp.149-155
    • /
    • 2007
  • Damage assessment and Damage index for RC members failed in flexure was investigated by using the nonlinear finite element analysis, included with nonlocal constitutive law, which is analyzed for the localization of the failure on the post-peak region. In the nonlcal constitutive law, The local strains obtained at gauss points were averaged over a particular length, i.e. characteristic length and it was used to evaluate the damage of RC column member. As the analysis results, The value of nonlocal strain shows less mesh sensibility. In the damage assessment, It was confirmed that evaluations of damage of RC member were able to use nonlocal compressive strain on a cover concrete and a core concrete of the member. Moreover it was confirmed that damage process for the statically indeterminate structure was able to evaluate the damage context of the component members of the structure.

  • PDF

On time reversal-based signal enhancement for active lamb wave-based damage identification

  • Wang, Qiang;Yuan, Shenfang;Hong, Ming;Su, Zhongqing
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1463-1479
    • /
    • 2015
  • Lamb waves have been a promising candidate for quantitative damage identification for various engineering structures, taking advantage of their superb capabilities of traveling for long distances with fast propagation and low attenuation. However, the application of Lamb waves in damage identification so far has been hampered by the fact that the characteristic signals associated with defects are generally weaker compared with those arising from boundary reflections, mode conversions and environmental noises, making it a tough task to achieve satisfactory damage identification from the time series. With awareness of this challenge, this paper proposes a time reversal-based technique to enhance the strength of damage-scattered signals, which has been previously applied to bulk wave-based damage detection successfully. The investigation includes (i) an analysis of Lamb wave propagation in a plate, generated by PZT patches mounted on the structure; (ii) an introduction of the time reversal theory dedicated for waveform reconstruction with a narrow-band input; (iii) a process of enhancing damage-scattered signals based on time reversal focalization; and (iv) the experimental investigation of the proposed approach to enhance the damage identification on a composite plate. The results have demonstrated that signals scattered by delamination in the composite plate can be enhanced remarkably with the assistance of the proposed process, benefiting from which the damage in the plate is identified with ease and high precision.

Study on Optimization of Fatigue Damage Calculation Process Using Spectrum (스펙트럼을 이용한 피로손상도 계산과정 최적화 연구)

  • Kim, Sang Woo;Lee, Seung Jae;Choi, Sol Mi
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.151-157
    • /
    • 2018
  • Offshore structures are exposed to low- and high-frequency responses due to environmental loads, and fatigue damage models are used to calculate the fatigue damage from these. In this study, we tried to optimize the main parameters used in fatigue damage calculation to derive a new fatigue damage model. A total of 162 bi-modal spectra using the elliptic equation were defined to describe the response of offshore structures. To calculate the fatigue damage from the spectra, time series were generated from the spectra using the inverse Fourier transform, and the rain-flow counting method was applied. The considered optimization variables were the size of the frequency increments, ratio of the time increment, and number of repetitions of the time series. In order to obtain optimized values, the fatigue damage was calculated using the parameter values proposed in previous work, and the fatigue damage was calculated by increasing or decreasing the proposed values. The results were compared, and the error rate was checked. Based on the test results, new values were found for the size of the frequency increment and number of time series iterations. As a validation, the fatigue damage of an actual tension spectrum found using the new proposed values and fatigue damage found using the previously proposed method were compared. In conclusion, we propose a new optimized calculation process that is faster and more accurate than the existed method.

A Study on Design of Forming Process of Tube-end for Brake of Automobiles (자동차 브레이크용 튜브의 끝단 성형 공정 설계에 관한 연구)

  • Jea, Wone-Soo;Ye, Sang-Don;Min, Byeong-Hyeon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.155-160
    • /
    • 2008
  • End part of the brake tube formed with the shape of snake head is important for the braking of automobile in safety because it has to prevent crack, fracture and defects occurred during the forming process. Especially, the shape of tube end has influence on the ability of brake. Based on the procedure of process design, in this paper, the forming operation is done by finite element method and the design variables are analyzed by Taguchi method. Design variables such as the outer angle of tube end with the shape of snake head(A), the inner angle to make a hole at tube end with the shape of snake head(B) and the forming distance at tube end(C) are used. Optimization of design variables is performed to minimize the damage factor of the tube end occurred during the forming process. The value of damage factor of 0.327 was obtained under the optimal condition like $A=114^{\circ},\;B=80^{\circ}$ and C=5.3mm, respectively.

  • PDF

Effects of Process Induced Damages on Organic Gate Dielectrics of Organic Thin-Film Transistors

  • Kim, Doo-Hyun;Kim, D.W.;Kim, K.S.;Moon, J.S.;KIM, H.J.;Kim, D.C.;Oh, K.S.;Lee, B.J.;You, S.J.;Choi, S.W.;Park, Y.C.;Kim, B.S.;Shin, J.H.;Kim, Y.M.;Shin, S.S.;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1220-1224
    • /
    • 2007
  • The effects of plasma damages to the organic thin film transistor (OTFT) during the fabrication process are investigated; metal deposition process on the organic gate insulator by plasma sputtering mainly generates the process induced damages of bottom contact structured OTFTs. For this study, various deposition methods (thermal evaporation, plasma sputtering, and neutral beam based sputtering) and metals (gold and Indium-Tin Oxide) have been tested for their damage effects onto the Poly 4-vinylphenol(PVP) layer surface as an organic gate insulator. The surface damages are estimated by measuring surface energies and grain shapes of organic semiconductor on the gate insulator. Unlike thermal evaporation and neutral beam based sputtering, conventional plasma sputtering process induces serious damages onto the organic surface as increasing surface energy, decreasing grain sizes, and degrading TFT performance.

  • PDF

3D Terrain Model Application for Explosion Assessment

  • Kim, Hyung-Seok;Chang, Eun-Mi;Kim, In-Won
    • 한국지역지리학회:학술대회
    • /
    • 2009.08a
    • /
    • pp.108-115
    • /
    • 2009
  • An increase in oil and gas plants caused by development of process industry have brought into the increase in use of flammable and toxic materials in the complex process under high temperature and pressure. There is always possibility of fire and explosion of dangerous chemicals, which exist as raw materials, intermediates, and finished goods whether used or stored in the industrial plants. Since there is the need of efforts on disaster damage reduction or mitigation process, we have been conducting a research to relate explosion model on the background of real 3D terrain model. By predicting the extent of damage caused by recent disasters, we will be able to improve efficiency of recovery and, sure, to take preventive measure and emergency counterplan in response to unprepared disaster. For disaster damage prediction, it is general to conduct quantitative risk assessment, using engineering model for environmentaldescription of the target area. There are different engineering models, according to type of disaster, to be used for industry disaster such as UVCE (Unconfined Vapor Cloud Explosion), BLEVE (Boiling Liquid Evaporation Vapor Explosion), Fireball and so on, among them.we estimate explosion damage through UVCE model which is used in the event of explosion of high frequency and severe damage. When flammable gas in a tank is released to the air, firing it brings about explosion, then we can assess the effect of explosion. As 3D terrain information data is utilized to predict and estimate the extent of damage for each human and material. 3D terrain data with synthetic environment (SEDRIS) gives us more accurate damage prediction for industrial disaster and this research will show appropriate prediction results.

  • PDF

APPLICATION OF 3D TERRAIN MODEL FOR INDUSTRY DISASTER ASSESSMENT

  • Kim, Hyung-Seok;Cho, Hyoung-Ki;Chang, Eun-Mi;Kim, In-Hyun;Kim, In-Won
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.3-5
    • /
    • 2008
  • An increase in oil and gas plants caused by development of process industry have brought into the increase in use of flammable and toxic materials in the complex process under high temperature and pressure. There is always possibility of fire and explosion of dangerous chemicals, which exist as raw materials, intermediates, and finished goods whether used or stored in the industrial plants. Since there is the need of efforts on disaster damage reduction or mitigation process, we have been conducting a research to relate explosion model on the background of real 3D terrain model. By predicting the extent of damage caused by recent disasters, we will be able to improve efficiency of recovery and, sure, to take preventive measure and emergency counterplan in response to unprepared disaster. For disaster damage prediction, it is general to conduct quantitative risk assessment, using engineering model for environmental description of the target area. There are different engineering models, according to type of disaster, to be used for industry disaster such as UVCE (Unconfined Vapour Cloud Explosion), BLEVE (Boiling Liquid Evaporation Vapour Explosion), Fireball and so on, among them, we estimate explosion damage through UVCE model which is used in the event of explosion of high frequency and severe damage. When flammable gas in a tank is released to the air, firing it brings about explosion, then we can assess the effect of explosion. As 3D terrain information data is utilized to predict and estimate the extent of damage for each human and material. 3D terrain data with synthetic environment (SEDRIS) gives us more accurate damage prediction for industrial disaster and this research will show appropriate prediction results.

  • PDF

A Study on the Reliability and Reproducibility of 571 CMP process (STI CMP 공정의 신뢰성 및 재현성에 관한 연구)

  • 정소영;서용진;김상용;이우선;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.25-28
    • /
    • 2001
  • Recently, STI(Shallow Trench Isolation) process has attracted attention for high density of semiconductor device as a essential isolation technology. Without applying the conventional complex reverse moat process, CMP(Chemical Mechanical Polishing) has established the Process simplification. However, STI-CMP process have various defects such as nitride residue, torn oxide defect, damage of silicon active region, etc. To solve this problem, in this paper, we discussed to determine the control limit of process, which can entirely remove oxide on nitride from the moat area of high density as reducing the damage of moat area and minimizing dishing effect in the large field area. We, also, evaluated the reliability and reproducibility of STI-CMP process through the optimal process conditions.

  • PDF