• Title/Summary/Keyword: damage potential

Search Result 1,866, Processing Time 0.028 seconds

Monitoring of Low-velocity Impact Damage Initiation of Gr/Ep Panel Using Piezoelectric Thin Film sensor (압전필름센서를 이용한 복합재 평판의 저속충격 손상개시 모니터링)

  • 이관호;박찬익;김인걸;이영신
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.174-178
    • /
    • 2001
  • The piezoelectric thin film sensor can be used to interpret variations in structural and material properties, e.g. for structural integrity monitoring and assessment. To illustrate one of this potential benefit, PVDF film sensors are used for monitoring impact damage initiation in Gr/Ep composite panel. Both PVDF film sensors and strain gages are surface mounted to the Gr/Ep specimens. A series of impact test at various impact energy by changing impact mass and height is performed on the instrumented drop weight impact tester. The sensor responses are carefully examined to predict the onset of impact damage such as matrix cracking, delamination, and fiber breakage, etc. Test results show that the particular waveforms of sensor signals implying the damage initiation and development are detected above the damage initiation impact energy. As expected, the PVDF film sensor is found to be more sensitive to impact damage initiation event than the strain gage.

  • PDF

Structural Damage Monitoring of Harbor Caissons with Interlocking Condition

  • Huynh, Thanh-Canh;Lee, So-Young;Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.678-685
    • /
    • 2012
  • The objective of this study is to monitor the health status of harbor caissons which have potential foundation damage. To obtain the objective, the following approaches are performed. Firstly, a structural damage monitoring(SDM) method is designed for interlocked multiple-caisson structures. The SDM method utilizes the change in modal strain energy to monitor the foundation damage in a target caisson unit. Secondly, a finite element model of a caisson system which consists of three caisson units is established to verify the feasibility of the proposed method. In the finite element simulation, the caisson units are constrained each other by shear-key connections. The health status of the caisson system against various levels of foundation damage is monitored by measuring relative modal displacements between the adjacent caissons.

Damage assessment of structures - an US air force office of scientific research structural mechanics perspective

  • Giurgiutiu, Victor
    • Smart Structures and Systems
    • /
    • v.6 no.2
    • /
    • pp.135-146
    • /
    • 2010
  • This paper presents the perspective of the Structural Mechanics program of the Air Force Office of Scientific Research (AFOSR) on the damage assessment of structures for the period 2006-2009 when the author was serving as Program Manager at AFOSR. It is found that damage assessment of structures plays a very important role in assuring the safety and operational readiness of US Air Force fleet. The current fleet has many aging aircraft, which poses a considerable challenge for the operators and maintainers. The nondestructive evaluation technology is rather mature and able to detect damage with considerable reliability during the periodic maintenance inspections. The emerging structural health monitoring methodology has great potential, because it will use on-board damage detection sensors and systems, will be able to offer on-demand structural health bulletins. Considerable fundamental and applied research is still needed to enable the development, implementation, and dissemination of structural health monitoring technology.

Reduction of Plasma Process Induced Damage during HDP IMD Deposition

  • Kim, Sang-Yung;Lee, Woo-Sun;Seo, Yong-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.3
    • /
    • pp.14-17
    • /
    • 2002
  • The HDP (High Density Plasma) CVD process consists of a simultaneous sputter etch and chemical vapor deposition. As CMOS process continues to scale down to sub- quarter micron technology, HDP process has been widely used fur the gap-fill of small geometry metal spacing in inter-metal dielectric process. However, HBP CVD system has some potential problems including plasma-induced damage. Plasma-induced gate oxide damage has been an increasingly important issue for integrated circuit process technology. In this paper, thin gate oxide charge damage caused by HDP deposition of inter-metal dielectric was studied. Multiple step HDP deposition process was demonstrated in this work to prevent plasma-induced damage by introducing an in-situ top SiH$_4$ unbiased liner deposition before conventional deposition.

Damage Potential Analysis and Earthquake Engineering-related Implications of Sep.12, 2016 M5.8 Gyeongju Earthquake (2016년 9월 12일 M5.8 경주지진의 데미지 포텐셜 분석 및 내진공학 측면의 시사점)

  • Lee, Cheol Ho;Park, Ji-Hun;Kim, Taejin;Kim, Sung-Yong;Kim, Dong-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.527-536
    • /
    • 2016
  • This paper investigates seismic damage potential of recent September 12 M5.8 Gyeongju earthquake from diverse earthquake engineering perspectives using the accelerograms recorded at three stations near the epicenter. In time domain, strong motion durations are evaluated based on the accelerograms and compared with statistical averages of the ground motions with similar magnitude, epicentral distance and soil conditions, while Fourier analysis using FFT is performed to identify damaging frequency contents contained in the earthquake. Effective peak ground accelerations are evaluated from the calculated response spectra and compared with apparent peak ground accelerations and the design spectrum in KBC 2016. All these results are used to consistently explain the reason why most of seismic damage in the earthquake was concentrated on low-rise stiff buildings but not quite significant. In order to comparatively appraise the damage potential, the constant ductility spectrum constructed from the Gyeongju earthquake is compared with that of the well-known 1940 El Centro earthquake. Deconvolution analysis by using one accelerogram speculated to be recorded at a stiff soil site is also performed to estimate the soil profile conforming to the response spectrum characteristics. Finally, response history analysis for 39- and 61-story tall buildings is performed as a case study to explain significant building vibration felt on the upper floors of some tall buildings in Busan area during the Gyeongju earthquake. Seismic design and retrofit implications of M5.8 Gyeongju earthquake are summarized for further research efforts and improvements of relevant practice.

Oral Administration of Alcohol-Tolerant Lactic Acid Bacteria Alleviates Blood Alcohol Concentration and Ethanol-Induced Liver Damage in Rodents

  • Misun Yun;Hee Eun Jo;Namhee Kim;Hyo Kyeong Park;Young Seo Jang;Ga Hee Choi;Ha Eun Jo;Jeong Hyun Seo;Ji Ye Mok;Sang Min Park;Hak-Jong Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.838-845
    • /
    • 2024
  • Excessive alcohol consumption can have serious negative consequences on health, including addiction, liver damage, and other long-term effects. The causes of hangovers include dehydration, alcohol and alcohol metabolite toxicity, and nutrient deficiency due to absorption disorders. Additionally, alcohol consumption can slow reaction times, making it more difficult to rapidly respond to situations that require quick thinking. Exposure to a large amount of ethanol can also negatively affect a person's righting reflex and balance. In this study, we evaluated the potential of lactic acid bacteria (LAB) to alleviate alcohol-induced effects and behavioral responses. Two LAB strains isolated from kimchi, Levilactobacillus brevis WiKim0168 and Leuconostoc mesenteroides WiKim0172, were selected for their ethanol tolerance and potential to alleviate hangover symptoms. Enzyme activity assays for alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) were then conducted to evaluate the role of these bacteria in alcohol metabolism. Through in vitro and in vivo studies, these strains were assessed for their ability to reduce blood alcohol concentrations and protect against alcohol-induced liver damage. The results indicated that these LAB strains possess significant ethanol tolerance and elevate ADH and ALDH activities. LAB administration remarkably reduced blood alcohol levels in rats after excessive alcohol consumption. Moreover, the LAB strains showed hepatoprotective effects and enhanced behavioral outcomes, highlighting their potential as probiotics for counteracting the adverse effects of alcohol consumption. These findings support the development of functional foods incorporating LAB strains that can mediate behavioral improvements following alcohol intake.

Identification of Flooded Areas and Post-flooding Conditions: Developing Flood Damage Mitigation Strategies Using Satellite Radar Imagery (레이더 위성영상을 활용한 침수피해 지역 파악 및 완화방안 연구)

  • Lee, Moungjin;Myeong, Soojeong;Jeon, Seongwoo;Won, Joong-Sun
    • Journal of Environmental Policy
    • /
    • v.8 no.2
    • /
    • pp.1-23
    • /
    • 2009
  • This study applied satellite radar imagery to identify flooded areas and examined post-flooding conditions using time-series satellite radar imagery for the development of flood damage mitigation strategies. Using time-series satellite radar images, this study constructed a map delineating areas vulnerable to frequent flood damage. The extracted flooded areas were combined with reference land use maps to examine flood damage by land use type. Major landuse types with severe flood damage were agricultural and forested areas. The analysis of the damage conditions, in terms of land use, served as the basis for developing flood damage mitigation policies, in conjunction with land use planning. The policies for flood damage mitigation can be summarized as land use regulations, land use planning, and flood damage mapping. A preventive measure to minimize flood damage of properties, which regulates developing areas with high flooding potential, is highly recommended. Although this study suggested a number of policies for flood damage mitigation, they represent only a small number of possible policies useful for mitigating flood damage and other environmental problems. Based upon the results of this study, it may be concluded that satellite radar imagery has great potential in providing basic data for large-scale environmental problems such as flooding and oil spills. Nevertheless, further examinations should be conducted and the application of satellite radar imagery should be used to examine other environmental problems.

  • PDF

A Study on the Gust with Thunderstorm in Honam Area (호남지역에서 뇌우에 의한 돌풍사례 분석)

  • Cho, Eun-Hee
    • Journal of Integrative Natural Science
    • /
    • v.2 no.2
    • /
    • pp.101-130
    • /
    • 2009
  • In recent years, South Korea has often witnessed damages by gusts caused by thunderstorms in summer. The Korea Meteorological Administration defines that a gust happens when the maximum instantaneous wind velocity is 10m/s or more and draws up hourly observation reports. When a cumulonimbus develops due to an ascending current and reaches the height of 12~16 km, the temperature of the cloud top drops and a lightening happens, which causes a gust accompanied by a thunderstorm and further regional meteorological damage. It's difficult to predict a regional gust with the mesoscale prediction model at the administration. Thus this study set out to analyze the damage cases by a gust accompanied by a thunderstorm and to make a contribution to the prediction and understanding of a gust by a thunderstorm. A gust by a thunderstorm happens where potential equivalent temperature converges or is higher than the surrounding areas. The convergence area of potential equivalent temperature matches the track of thunderstorm cells. The Kimje gust took place where high potential equivalent temperature converged, and the Jangsu gust did as the area of high potential equivalent temperature approached. There should be a good amount of vapor supply with the moisture flux converging at the bottom layer in order to bring instability. In addition, it should collide into a dry and cold atmosphere at 700 hPa. The moving track at the center of the low dew point spread corresponds to that of a gust.

  • PDF

Study on the Improvement Method of Flood Risk Assessment by Flood Damage Area (홍수피해예상지역을 고려한 홍수위험도 산정기법 개선방안 연구)

  • Hong, Seungjin;Joo, Hongjun;Kim, Kyungtak
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.459-469
    • /
    • 2017
  • The aim of this study is to improve Potential Flood Damage(PFD) that a flood risk assessment technique used in the National Water Resource Plan comprehensive plan for water resources, which is a top-level plan related to domestic water resources and Flood Risk Indices. Both methods are used to evaluate flood control risks. However, there is a problem of reliability because the problem of data utilization and the damage that occurred in a specific area are applied as an average concept. Therefore, this study improved the method for analysis by components and the flood inundation area was limited to flood damage area. Also, the improvement of the method and the application of the recently provided GIS data to the flood damage prediction area were proposed to improve the usability of the existing method. The existing analysis method and the improved method were applied to the test watershed by each case.

Nonlinear damage detection using linear ARMA models with classification algorithms

  • Chen, Liujie;Yu, Ling;Fu, Jiyang;Ng, Ching-Tai
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Majority of the damage in engineering structures is nonlinear. Damage sensitive features (DSFs) extracted by traditional methods from linear time series models cannot effectively handle nonlinearity induced by structural damage. A new DSF is proposed based on vector space cosine similarity (VSCS), which combines K-means cluster analysis and Bayesian discrimination to detect nonlinear structural damage. A reference autoregressive moving average (ARMA) model is built based on measured acceleration data. This study first considers an existing DSF, residual standard deviation (RSD). The DSF is further advanced using the VSCS, and then the advanced VSCS is classified using K-means cluster analysis and Bayes discriminant analysis, respectively. The performance of the proposed approach is then verified using experimental data from a three-story shear building structure, and compared with the results of existing RSD. It is demonstrated that combining the linear ARMA model and the advanced VSCS, with cluster analysis and Bayes discriminant analysis, respectively, is an effective approach for detection of nonlinear damage. This approach improves the reliability and accuracy of the nonlinear damage detection using the linear model and significantly reduces the computational cost. The results indicate that the proposed approach is potential to be a promising damage detection technique.