• Title/Summary/Keyword: damage impact range

Search Result 125, Processing Time 0.02 seconds

Optimum stiffness values for impact element models to determine pounding forces between adjacent buildings

  • Jaradat, Yazan;Far, Harry
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.293-304
    • /
    • 2021
  • Structural failure due to seismic pounding between two adjacent buildings is one of the major concerns in the context of structural damage. Pounding between adjacent structures is a commonly observed phenomenon during major earthquakes. When modelling the structural response, stiffness of impact spring elements is considered to be one of the most important parameters when the impact force during collision of adjacent buildings is calculated. Determining valid and realistic stiffness values is essential in numerical simulations of pounding forces between adjacent buildings in order to achieve reasonable results. Several impact model stiffness values have been presented by various researchers to simulate pounding forces between adjacent structures. These values were mathematically calculated or estimated. In this study, a linear spring impact element model is used to simulate the pounding forces between two adjacent structures. An experimental model reported in literature was adopted to investigate the effect of different impact element stiffness k on the force intensity and number of impacts simulated by Finite Element (FE) analysis. Several numerical analyses have been conducted using SAP2000 and the collected results were used for further mathematical evaluations. The results of this study concluded the major factors that may actualise the stiffness value for impact element models. The number of impacts and the maximum impact force were found to be the core concept for finding the optimal range of stiffness values. For the experimental model investigated, the range of optimal stiffness values has also been presented and discussed.

A Case Study on the Effects of Noise and Vibration on the Damage of Livestock (소음·진동에 의한 가축피해 사례분석)

  • Park, Hyoung-Sook
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.6
    • /
    • pp.381-391
    • /
    • 2008
  • The instances of the damage to livestock are increasing with frequent environmental disputes on the noise and vibration. This study analyzed 134 open cases dealing with the environmental disputes on livestock damaged by noise and vibration, and being intervened by National Environmental Dispute Resolution Commission. The environmental disputes on the noise and vibration account for 86% of all the disputes, and cases of the consequent damages to livestock have increased. As shown in the 134 cases, pig is the most lethal livestock attacked by the noise and vibration. During last 10 years, 89% of the noise damages hurting the livestock resulted from the noises pertaining to construction and 58% was due to the noise damages from the road constructions. The noise levels in the range of 70~80 dB(A) and the vibration levels of 70~75 dB(V) caused most of the disputes. The average rate of reimbursement for the livestock damages for the last 10 years was higher than the average rate of reimbursement of the total disputes intervened by National Dispute Resolution Commission.

Perturbation analysis for robust damage detection with application to multifunctional aircraft structures

  • Hajrya, Rafik;Mechbal, Nazih
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.435-457
    • /
    • 2015
  • The most widely known form of multifunctional aircraft structure is smart structures for structural health monitoring (SHM). The aim is to provide automated systems whose purposes are to identify and to characterize possible damage within structures by using a network of actuators and sensors. Unfortunately, environmental and operational variability render many of the proposed damage detection methods difficult to successfully be applied. In this paper, an original robust damage detection approach using output-only vibration data is proposed. It is based on independent component analysis and matrix perturbation analysis, where an analytical threshold is proposed to get rid of statistical assumptions usually performed in damage detection approach. The effectiveness of the proposed SHM method is demonstrated numerically using finite element simulations and experimentally through a conformal load-bearing antenna structure and composite plates instrumented with piezoelectric ceramic materials.

The Effects of Sealing Materials in Cone Crack Formation of Soda-lime Glass by Ball Impact (볼 충격을 받는 유리의 콘크랙형성에 대한 실링재료의 영향)

  • Kim, Moon-Saeng;Heo, Jin;Lee, Hyun-Chul;Kim, Ho-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.156-163
    • /
    • 2003
  • In order to investigate the possibility of punching process of brittle material by ball impact, the effects of sealing materials about impact damage of soda-lime glass by small spheres were evaluated experimentally. The using of sealing materials in the development of perfect cone crack was more effective than no using of sealing materials. At the sealing materials condition, in the case of 5mm-thick specimen, Copper and PMMA sealing were more effective in producing a perfect cone formation than the other sealing materials. And in the case of 8mm-thick specimen, Aluminum sealing was most effective in producing a perfect cone formation. The impact velocity range over which perfect cones were formed was influenced by both the thickness of specimen and sealing materials. By a proper selection of sealing materials, the application fur industrial technology for hole (or nozzle) punching process of brittle materials is expected.

Accuracy and robustness of hysteresis loop analysis in the identification and monitoring of plastic stiffness for highly nonlinear pinching structures

  • Hamish Tomlinson;Geoffrey W. Rodgers;Chao Xu;Virginie Avot;Cong Zhou;J. Geoffrey Chase
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.101-111
    • /
    • 2023
  • Structural health monitoring (SHM) covers a range of damage detection strategies for buildings. In real-time, SHM provides a basis for rapid decision making to optimise the speed and economic efficiency of post-event response. Previous work introduced an SHM method based on identifying structural nonlinear hysteretic parameters and their evolution from structural force-deformation hysteresis loops in real-time. This research extends and generalises this method to investigate the impact of a wide range of flag-shaped or pinching shape nonlinear hysteretic response and its impact on the SHM accuracy. A particular focus is plastic stiffness (Kp), where accurate identification of this parameter enables accurate identification of net and total plastic deformation and plastic energy dissipated, all of which are directly related to damage and infrequently assessed in SHM. A sensitivity study using a realistic seismic case study with known ground truth values investigates the impact of hysteresis loop shape, as well as added noise, on SHM accuracy using a suite of 20 ground motions from the PEER database. Monte Carlo analysis over 22,000 simulations with different hysteresis loops and added noise resulted in absolute percentage identification error (median, (IQR)) in Kp of 1.88% (0.79, 4.94)%. Errors were larger where five events (Earthquakes #1, 6, 9, 14) have very large errors over 100% for resulted Kp as an almost entirely linear response yielded only negligible plastic response, increasing identification error. The sensitivity analysis shows accuracy is reduces to within 3% when plastic drift is induced. This method shows clear potential to provide accurate, real-time metrics of non-linear stiffness and deformation to assist rapid damage assessment and decision making, utilising algorithms significantly simpler than previous non-linear structural model-based parameter identification SHM methods.

Free vibration and buckling analysis of the impacted hybrid composite beams

  • Ergun, Emin;Yilmaz, Yasin;Callioglu, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1055-1070
    • /
    • 2016
  • The aim of this experimental study is to investigate the free vibration and buckling behaviors of hybrid composite beams having different span lengths and orientation angles subjected to different impact energy levels. The impact energies are applied in range from 10 J to 30 J. Free vibration and buckling behaviors of intact and impacted hybrid composite beams are compared with each other for different span lengths, orientation angles and impact levels. In free vibration analysis, the first three modes of hybrid beams are considered and natural frequencies are normalized. It is seen that first and second modes are mostly affected with increasing impact energy level. Also, the fundamental natural frequency is mostly affected with the usage of mold that have 40 mm span length (SP40). Moreover, as the impact energy increases, the normalized critical buckling loads decrease gradually for $0^{\circ}$ and $30^{\circ}$ oriented hybrid beams but they fluctuate for the other beams.

Computational impact responses of reinforced concrete slabs

  • Mokhatar, S.N.;Abdullah, R.;Kueh, A.B.H.
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.37-51
    • /
    • 2013
  • The responses of reinforced concrete slabs subject to an impact loading near the ultimate load range are explored. The analysis is carried out on a simply supported rectangular reinforced concrete slab using a nonlinear explicit dynamic procedure and considering three material models: Drucker-Prager, modified Drucker-Prager, and concrete damaged plasticity, available in the commercial finite element software, ABAQUS/Explicit. For comparison purposes, the impact force-time response, steel reinforcement failure, and concrete perforation pattern are verified against the existing experimental results. Also, the effectiveness of mesh density and damage wave propagation are studied independently. It is shown that the presently adopted finite element procedure is able to simulate and predict fairly accurate the behavior of reinforced concrete slab under impact load. More detailed investigations are however demanded for the justification of effects coming from an imperfect projectile orientation as well as the load and structural surface conditions, including the impulsive contacted state, which are inevitable in an actual impact environment.

A Study on Development of Damage Impact Distance Calculation Formula for Accident Response and Prevention in case of Leakage of Substances Prepared for Evacuation of Residents in Chungju (충주의 주민대피 대비물질 누출사고 시 사고대응·예방을 위한 피해영향거리 산정식 개발 연구)

  • Jeon, Byeong-Han;Kim, Hyun-Sub;Lee, Myeong-Ji;Yun, Jeong-Hyeon;Jung, Woong-Yul;Oh, Seung-Bo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.703-712
    • /
    • 2021
  • In this study, a formula was derived to calculate the damage impact distance using the Chemical Accident Response Information System (CARIS) so that local governments can decide on the evacuation and notification of 13 types of substances. The National Institute of Chemical Safety selected 16 out of 97 types of accident preparedness substances in 2018 and called them residents' evacuation preparedness substances. In a chemical accident, local governments should prepare for resident notification, such as emergency disaster texts. Using the CARIS in Chungju, this study modeled the damage-affected distances of 13 types of substances for the evacuation of residents. Under all conditions, the coefficient of determination R2 was 0.99 or higher, representing a range of at least 0.9921 to a maximum 0.9999. The relative standard deviation between the damage impact distance obtained using the calculation formula, and the CARIS result was compared. The minimum separation distance was corrected considering the actual chemical accident response situation, and the range was found to be between 0.58 and 5.97%. The damage impact distance can be calculated at the site using the calculation formula derived from the research, and local governments can determine whether to evacuate or notify residents.

Damage Evaluation of Glass Fiber/PET Composite Using Acoustic Emission Method (음향방출법을 이용한 Glass Fiber/PET 복합재료의 손상평가)

  • 김상태;김덕윤
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • In this study, damage evaluation of glass fiber reinforced thermoplastic composites was investigated with acoustic emission method. Specimens of 1.7mm thickness laminate were made from PET and 7 layers o171ass fabrics. Notch and impact loading were added to the specimen and normal tensile test and tensile test with the dead load were carried out. AE signal was measured as the functions of notch ratio to the width0 and impact energy in order to find out the correlation between fracture mode and AE parameters. The result has shown that low amplitude of AE signal was due to the microcrack of matrix and its growth, whereas the amplitude in the mid range was the response to the delamination and interfacial separation. In the range of high amplitude above 90dB. the fracture of glass fabric was found. Tensile strength decreased with increasing notch ratio to the width and impact energy because of tile effect or delamination, the cracking of matrix and stress concentration. In proportion to the size of damaged area. AE signal showed its wider range of frequency and energy as well as increased number of hits.

  • PDF

Seismic performance of a building base-isolated by TFP susceptible to pound with a surrounding moat wall

  • Movahhed, Ataallah Sadeghi;Zardari, Saeid;Sadoglu, Erol
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.87-100
    • /
    • 2022
  • Limiting the displacement of seismic isolators causes a pounding phenomenon under severe earthquakes. Therefore, the ASCE 7-16 has provided minimum criteria for the design of the isolated building. In this research the seismic response of isolated buildings by Triple Friction Pendulum Isolator (TFPI) under the impact, expected, and unexpected mass eccentricity was evaluated. Also, the effect of different design parameters on the seismic behavior of structural and nonstructural elements was found. For this, a special steel moment frame structure with a surrounding moat wall was designed according to the criteria, by considering different response modification coefficients (RI), and 20% mass eccentricity in one direction. Then, different values of these parameters and the damping of the base isolation were evaluated. The results show that the structural elements have acceptable behavior after impact, but the nonstructural components are placed in a moderate damage range after impact and the used improved methods could not ameliorate the level of damage. The reduction in the RI and the enhancement of the isolator's damping are beneficial up to a certain point for improving the seismic response after impact. The moat wall reduces torque and maximum absolute acceleration (MAA) due to unexpected enhancement of mass eccentricity. However, drifts of some stories increase. Also, the difference between the response of story drift by expected and unexpected mass eccentricity is less. This indicates that the minimum requirement displacement according to ASCE 7-16 criteria lead to acceptable results under the unexpected enhancement of mass eccentricity.