• Title/Summary/Keyword: damage accumulation

Search Result 454, Processing Time 0.025 seconds

A probabilistic analytical seismic vulnerability assessment framework for substandard structures in developing countries

  • Kyriakides, Nicholas;Ahmad, Sohaib;Pilakoutas, Kypros;Neocleous, Kyriacos;Chrysostomou, Christis
    • Earthquakes and Structures
    • /
    • v.6 no.6
    • /
    • pp.665-687
    • /
    • 2014
  • This paper presents a framework for analytical seismic vulnerability assessment of substandard reinforced concrete (RC) structures in developing countries. Amodified capacity-demand diagram method is used to predict the response of RC structures with degrading behaviour. A damage index based on period change is used to quantify the evolution of damage. To demonstrate the framework, a class of substandard RC buildings is examined. Abrupt accumulation of damage is observed due to the brittle failure modes and this is reflected in the developed vulnerability curves, which differ substantially from the curves of ductile structures.

Fatigue Life Prediction of Stainless Steel Using Acoustic Emission (음향방출법을 이용한 스테인레스강 피로수명 예측)

  • Kim, Y.H.;Jung, C.K.;Yang, Y.C.;Han, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.193-198
    • /
    • 2001
  • The feasibility of the acoustic emission technique in predicting the residual fatigue life of STS304 stainless steel is presented. Acoustic emission was continuously monitored during the fatigue tests. Considerable acoustic emission occurred during the first few cycles. Acoustic Emission increased rapidly at about 90% of the fatigue life, clear and ample warning of impending fatigue failure was observed. Fatigue damage accumulation was evaluated in terms of an AE cumulative counts. The AE cumulative counts may be taken as an indicator of fatigue cumulative damage. Fatigue damages corresponding to 20, 40, 60 and 80% of the total life were induced at a cyclic stress amplitude. The specimens with and without fatigue damage were subjected to tensile tests. In tensile tests, the total cumulative counts were reduced with increasing fatigue damage. It was observed that the residual tensile strength of material did not change significantly with prior cyclic loading damages.

  • PDF

Phenomenological monte carlo simulation model for predicting B, $BF_2$, As, P and Si implant profiles in silicon-based semiconductor device

  • Kwon, Oh-Kuen;Son, Myung-Sik;Hwang, Ho-Jung
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • This paper presents a newly enhanced damage model in Monte Carlo (MC) simulation for the accurate prediction of 3-Dimensional (3D) as-implanted impurity and point defect profiles induced by ion implantation in (100) crystal silicon. An empirical electronic energy loss model for B, BF2, As, P and Si self implant over the wide energy range has been proposed for the ULSI device technology and development. Our model shows very good agreement with the SIMS data over the wide energy range. In the damage accumulation, we considered the self-annealing effects by introducing our proposed non-linear recomvination probability function of each point defect for the computational efficiency. For the damage profiles, we compared the published RBS/channeling data with our results of phosphorus implants. Our damage model shows very reasonable agreement with the experiments for phosphorus implants.

  • PDF

The Proposal of Debrisflow Investigation (토석류 재해 조사법의 제안)

  • Choi, Hui-Rim;Chang, Bhum-Soo;Lee, Wang-Gon;Park, Sang-Duk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1100-1106
    • /
    • 2009
  • A debris flow is known as that flood and landslide of water cause much physical human damages worldwide to complex natural disaster that happen combining and happy event is happening mainly in urgent mountains area in domestic. Because happen about debris flow that happen from each place every year and is drift, mechanism of accumulation definitely make clear and great many damage is not running out. Must grasp actual conditions of priority debris flow to need debris flow prevention countermeasure and lay countermeasure to take away damage by debris flow. Because collecting actual conditions of debris flow that happen by objective investigation methods and accuracy, proposed about investigation calamity investigation method so that can calculate debris flow damage and prepare in subsequentness damage.

  • PDF

Fatigue performance assessment of welded joints using the infrared thermography

  • Fan, J.L.;Guo, X.L.;Wu, C.W.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.417-429
    • /
    • 2012
  • Taking the superficial temperature increment as the major fatigue damage indicator, the infrared thermography was used to predict fatigue parameters (fatigue strength and S-N curve) of welded joints subjected to fatigue loading with a high mean stress, showing good predictions. The fatigue damage status, related to safety evaluation, was tightly correlated with the temperature field evolution of the hot-spot zone on the specimen surface. An energetic damage model, based on the energy accumulation, was developed to evaluate the residual fatigue life of the welded specimens undergoing cyclic loading, and a good agreement was presented. It is concluded that the infrared thermography can not only well predict the fatigue behavior of welded joints, but also can play an important role in health detection of structures subjected to mechanical loading.

Studies on Damage Properties of MgO-C Refractories through Hertzian Indentation at Room and High Temperatures

  • Cho, Geun-Ho;Byeun, Yunki;Jung, Yeon-Gil
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.77-83
    • /
    • 2019
  • MgO-C refractories are used in basic furnaces and steel ladles due to their many desirable properties, such as excellent thermal shock resistance via low thermal expansion, and high thermal conductivity. However, the mechanical and thermal properties of the refractory continuously deteriorate by spalling phenomena and pore generation due to the oxidation of graphite, used as a carbon source, indicating that the characteristics and performance of MgO-C refractories need to be improved by using a new material or composition. In this study, the use of a Hertzian indentation test as a method for determining the damage and fracture behavior of an MgO-C refractory is described. The results highlight that Hertzain indentation tests can be one of the important evaluation tools for quasi-plastic damage accumulation of MgO-C refractories during falling process of scrap metal.

Analysis of the global gene expression profiles in genomic instability-induced cervical cancer cells

  • Oh, Jung-Min
    • International Journal of Oral Biology
    • /
    • v.47 no.2
    • /
    • pp.17-24
    • /
    • 2022
  • Preserving intact genetic material and delivering it to the next generation are the most significant tasks of living organisms. The integrity of DNA sequences is under constant threat from endogenous and exogenous factors. The accumulation of damaged or incompletely-repaired DNA can cause serious problems in cells, including cell death or cancer development. Various DNA damage detection systems and repair mechanisms have evolved at the cellular level. Although the mechanisms of these responses have been extensively studied, the global RNA expression profiles associated with genomic instability are not well-known. To detect global gene expression changes under different DNA damage and hypoxic conditions, we performed RNA-seq after treating human cervical cancer cells with ionizing radiation (IR), hydroxyurea, mitomycin C (MMC), or 1% O2 (hypoxia). Results showed that the expression of 184-1037 genes was altered by each stimulus. We found that the expression of 51 genes changed under IR, MMC, and hypoxia. These findings revealed damage-specific genes that varied differently according to each stimulus and common genes that are universally altered in genetic instability.

Lipofuscin Granule Accumulation Requires Autophagy Activation

  • Seon Beom Song;Woosung Shim;Eun Seong Hwang
    • Molecules and Cells
    • /
    • v.46 no.8
    • /
    • pp.486-495
    • /
    • 2023
  • Lipofuscins are oxidized lipid and protein complexes that accumulate during cellular senescence and tissue aging, regarded as markers for cellular oxidative damage, tissue aging, and certain aging-associated diseases. Therefore, understanding their cellular biological properties is crucial for effective treatment development. Through traditional microscopy, lipofuscins are readily observed as fluorescent granules thought to accumulate in lysosomes. However, lipofuscin granule formation and accumulation in senescent cells are poorly understood. Thus, this study examined lipofuscin accumulation in human fibroblasts exposed to various stressors. Our results substantiate that in glucose-starved or replicative senescence cells, where elevated oxidative stress levels activate autophagy, lipofuscins predominately appear as granules that co-localize with autolysosomes due to lysosomal acidity or impairment. Meanwhile, autophagosome formation is attenuated in cells experiencing oxidative stress induced by a doxorubicin pulse and chase, and lipofuscin fluorescence granules seldom manifest in the cytoplasm. As Torin-1 treatment activates autophagy, granular lipofuscins intensify and dominate, indicating that autophagy activation triggers their accumulation. Our results suggest that high oxidative stress activates autophagy but fails in lipofuscin removal, leaving an abundance of lipofuscin-filled impaired autolysosomes, referred to as residual bodies. Therefore, future endeavors in treating lipofuscin pathology-associated diseases and dysfunctions through autophagy activation demand meticulous consideration.

Damage propagation in CFRP laminates subjected to low velocity impact and static indentation

  • Aoki, Yuichiro;Suemasu, Hiroshi;Ishikawa, Takashi
    • Advanced Composite Materials
    • /
    • v.16 no.1
    • /
    • pp.45-61
    • /
    • 2007
  • This paper describes a damage accumulation mechanism in cross-ply CFRP laminates $[0_2/90_2]_{2S}$ subjected to out-of-plane loading. Drop-weight impact and static indentation tests were carried out, and induced damage was observed by ultrasonic C-scan and an optical microscope. Both tests gave essentially the same results for damage modes, sizes, and load-deformation history. First, a crack occurred in the bottom $0^{\circ}$ layer accompanying some delamination along the crack caused by bending stress. Then, transverse cracks occurred in the middle $90^{\circ}$ layer with decreasing contact force between the specimen and the indenter. Measured local strains near the impact point showed that the stress state changed from a bending dominant state to an in-plane tensile dominant state. A cohesive interface element was used to simulate the propagation of multiple delaminations and transverse cracks under static indentation. Two types of analytical models are considered, one with multiple delaminations and the other with both multiple delaminations and transverse cracks. The damage obtained for the model with only multiple delaminations was quite different from that obtained from the experiment. However, the results obtained from the model with both delaminations and transverse cracks well explain the characteristics of the damage obtained in the experiment. The existence of the transverse cracks is essential to form the characteristic impact damage.

Newborn Screening for Lysosomal Storage Diseases in Taiwan

  • Lin, Hsiang-Yu;Chuang, Chih-Kuang;Lin, Shuan-Pei
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.3 no.1
    • /
    • pp.14-19
    • /
    • 2017
  • Lysosomal storage diseases (LSDs) are a group of rare inherited metabolic disorders caused by the deficiency of specific lysosomal enzymes and subsequent accumulation of substrates. Enzyme deficiency leads to progressive intra-lysosomal accumulation of the incompletely degraded substances, which cause dysfunction and destruction of the cell and eventually multiple organ damage. Patients have a broad spectrum of clinical phenotypes which are generally not specific for some LSDs, leading to missed or delayed diagnosis. Due to the availability of treatment including enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation for some LSDs, early diagnosis is important. ERT products have been approved with optimal outcomes for some LSDs in the recent decades, including Gaucher, Fabry, mucopolysaccharidosis (MPS) I, Pompe, MPS VI, MPS II, and MPS IVA diseases. ERT can stabilize the clinical condition, prevent disease progression, and improve the long-term outcome of these diseases, especially if started prior to irreversible organ damage. Based on the availability of therapy and suitable screening methods in the recent years, some LSDs, including Pompe, Fabry, Gaucher, MPS I, MPS II, and MPS VI diseases have been incorporated into nationwide newborn screening panels in Taiwan.