• Title/Summary/Keyword: dalseong mine

Search Result 7, Processing Time 0.018 seconds

Geochemical Study on Heavy Metal Pollution of Plants at Dalseong Abandoned Mine (달성폐광산 주변 식물의 중금속 오염에 대한 지화학적 연구)

  • Lee, Jae Yeong;Lee, In Ho;Kim, Suk Ki
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.223-233
    • /
    • 1998
  • The environments in the vicinity of the Dalseong mine has been much contaminated by heavy metals related to CuW ore deposit, which is of hydrothermal pipe type mineralized by quartz monzonite in the andesitic rocks. Chalcopyrite and wolframite are major ore minerals and sphalerite, galena and others are associated. To investigate the contamination of heavy metals in plants, samples of plants and soils were analysed by ICP for Fe, Mn, Cu, Pb, Zn, Ni, Co, Cd and Cr. Most of ore-related heavy metals are anomalously high in plants and soils, which were contaminated by the development of Taehan Tungsten Mining Company. The mine produced 48,704 tons (M/T) of 4 wt.% Cu and 1,620 tons (S/T) of 70 wt.% of $WO_3$ during active mining activity from 1961 to 1971 but was closed in 1975. Wild plants growing at the mine area may be used to remove heavy metals form soils, which cause contaminations of plants, stream waters and groundwaters in the vicinity of the mine.

  • PDF

Geochemical Study on Pollution of Heavy Metals in Soils, Plants and Streams in the Vicinity of Abandoned Metal Mines -Dalseong and Kyeongsan Mines- (금속폐광산주변의 토양, 식물 및 하천의 중금속오염에 대한 지화학적 연구 -달성 및 경산광산-)

  • Lee, Jae Yeong;Lee, In Ho;Lee, Sun Yeong
    • Economic and Environmental Geology
    • /
    • v.29 no.5
    • /
    • pp.597-613
    • /
    • 1996
  • The tonnage of copper and tungsten produced at Dalseong mine by Taehan Tungsten Mining Company from 1961 to 1971 was 48,704 tons (M/T) of 4 wt.% Cu and 1,620 tons (S/T) of 70wt.% WO, but the mine was closed in 1974. Kyeongsan mine is a small abandoned cobalt mine with no data of production. To investigate the pollution level of the mine areas, soils, plants (Ohwi and Pampanini), stream waters and stream sediments were taken and Fe, Mn, Cu, Pb, Zn, Ni, Co, Cd and Cr were analysed by ICP. Soils are considerably contaminated by the heavy metals related to ore deposits, The heavy metal contents in plants vary with the species and parts of plants. Stream waters are anomalously high in heavy metals in the vicinity of the mines but the contents decrease downstream in the process of dilution and precipiation. However, heavy metal contents increase very high in stream sediments due to precipiation. To protect environmental damages caused by acid mine drainages wetlands must be constructed outside pits, and it is necessary to fill pits with waters, limestone chips and organic materials, which give reducing and alkaline condition to ores. Under the condition pyrite is protected from oxidation and aqueous iron sulphates precipitate to form stable secondary pyrite.

  • PDF

Dissolution Mechanism of Abandoned Metal Ores and Formation of Ochreous Precipitates, Dalseong Mine (달성광산의 폐금속 광석의 용해메커니즘과 하상 침전물의 형성특징)

  • Choo, Chang-Oh;Lee, Jin-Kook;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.577-586
    • /
    • 2008
  • The formation of acid mine drainage is closely related to water chemistry and ochreous sprecipitates formed at the bottom of creeks because it is initially derived from the possible water-rock interaction in abandoned waste metals at the mine. According to analyses on water, precipitates, and alteration characters of ore metals in Dalseone mine, whitish precipitates formed at pHs above 5 while schwertmannite formed at pH $3{\sim}4$. Water chemistry vary with seasons. The water chemistry of the treatment site measured ir Octoter 2002 is characterized by lower pH, and higher Al, Zn, Cu contents relative to those in March, 2003. In the latter case, As and Cl contents are very high. $^{27}Al$ MAS NMR data show the presence of predominant octahedral Al in whitish precipitates. Metal ore minerals dissolve at margins, cleavage, or comer of crystals where reactive sites are potential. Pyrite dissolves, forming etch pits or smooth faces on the edge.

Characteristics of the Dalseong Acid Mine Drainage and the Role of Schwertmannite (달성폐광산 산성광산배수의 발달특징과 슈베르트마나이트의 역할)

  • Choo, Chang-Oh;Jeong, Gyo-Cheol;Lee, Jin-Kook
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.187-196
    • /
    • 2007
  • The Dalseong acid mine drainage were studied focused on the characters of schwertmannite that controls geochemistry of the stream. Besides chemical analysis of stream water, particle size analysis, XRD SEM and TEM were performed on precipitates of streams and on wasted metalliferous ores. The AMD discharged from the abandoned mine reveals a decrease of pH and EC downward stream. Euhedral sulfur occurs as equigranular aggregates on the altered pyrite while fine acicula goethite coalesces to form cross, star, or starfish-like shapes. Water chemistry plotted on the Eh-pH diagram shows that schwertmannite and ferrihydrite are stable phases. Reddish brown precipitates consist of mostly schwertmannite with less goethite, whereas yellowish brown precipitates are composed of geothite with less schwertmannite. The particle size of precipitates ranges $d(0.1)\;0.861{\mu}m{\sim}3.769{\mu}m,\;d(0.5)\;3.984{\mu}m{\sim}15.255{\mu}m,\;and\;d(0.9)\;9.875{\mu}m{\sim}56.726{\mu}m$. Schwertmannite is characterized by equigranular spheric form. Pincushion or spicule with 100nm width and $200{\sim}300nm$length form on schwertmannite sphere with radial growth patterns. It is highly probable that reddish or yellowish brown precipitates formed in many AMDs may contain schwerhnannite. Because it can serve as sink for removing heavy elements by adsorption in AMD system, there is a need to correctly identify schwertmannite in precipitates and to characterize its phase stability.

Formation of Alunite and Schwertmannite under Oxidized Condition and Its Implication for Environmental Geochemistry at Dalseong mine (산화환경하에서 명반석, 슈베르트마나이트의 형성특징과 환경지구화학적 의미: 달성광산)

  • 추창오;이진국;조현구
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.37-47
    • /
    • 2004
  • Sulfates such as alunite and schwertmannite formed under oxidation condition play a important role in geochemical processes taken place at waste dumps and a creek from Dalseong mine, Daegu. Water chemistry shows pH decreases from upstream toward downstream creek, mainly due to formation of schwertmannite that is the most abundant phase along the creek. The removal of Al from the creek is preferentially attributed to formation of Al-bearing minerals and Al-sulphates. Among them, alunite is the most important Al-sink phase that occurs at higher pH than $pK_1$, Al hydrolysis constant. With high saturation index, alunite formed at the creek has a spherical form, commonly associated with schwertmannite. Secondary minerals formed on the surface of altered or weathered surfaces of heavy metals from the wasted dump that underwent severe oxidation, where alunite has characteristic habits which are spheric, radiating, and botrytis-like aggregates. Natroalunite occurs in association with alunite, or as mixtures of both of them. Because the pH decreases with distance due to formation of schwertmannite, although total contents of dissolved ions slowly lessen at least in the AMD, it is expected that the minerals precipitated at the creek can be exposed to subsequent dissolution, which may induce possible environmental problems.

Adsorption Characteristics of As, Cu, and Cd Using Precipitates from Dalseong Mine (달성광산 산성광산배수 침전물에 대한 As, Cu, Cd 흡착 특성 연구)

  • Byun, Hyun Suk;Kim, Young Hun;Kim, Jeong Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.195-204
    • /
    • 2017
  • For evaluation of adsorption characteristics of heavy metals, precipitates were collected from stream bottom in the Dalseong mine. The removal of some heavy metals such as As, Cu, and Cd from aqueous solution is studied using a precipitates taken from acid mine drainage. The yellowish brown (Munsell color 8.75YR 5/10) and dark brown (Munsell color 2.5YR 3/8) precipitates that collected from the study area consist mainly of schwertmannite and goethite, respectively. The percentage removal or adsorption capacity of metals depends on the initial concentration and characteristics of adsorbent. Removal efficiency of the adsorbents shows the order for metal ions of As > Cu > Cd. The adsorption efficiency by absorbent of precipitates in low concentration metal aqueous solution were observed 67.00-85.00% for As, 26.24-29.08% for Cd, and 7.67-12.82% for Cu. As the initial concentration of metal ions was increased from 1 to 10 mg/L, adsorption amount of adsorbent increased from 0.29 to 1.29 mg/g of Cu of schwertmannite, and from 0.24 to 1.97 mg/g of goethite.