• Title/Summary/Keyword: daily solar radiation

Search Result 233, Processing Time 0.063 seconds

A Study on Estimating Solar Radiation in Relation to Meteorological Parameters (기상매개변수와의 상관관계에 의한 일사예측에 관한 연구)

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.3
    • /
    • pp.1-6
    • /
    • 2008
  • It is necessary to estimate empirical constants in order to predict the monthly mean daily global radiation on a horizontal surface in the developing areas for alternative energy. Therefore many different equations have proposed to evaluate them for certain areas. In this work a new correlation has been made to predict the solar radiation for any areas over Korea by calculating the regression models taking into account latitude, percentage of possible sunshine, and cloud cover. Results clearly demonstrates the reliability of the single linear equation for the estimation of global radiation, which is proposed by using percentage of possible sunshine method. When compared with the measured values, the average annual deviation falls between -3.1 to +0.6%.

Estimation of Daily Solar Radiation at the Missing Point for Water Quality Impact Assessment in Nakdong River Watershed: Comparison of Modified Angstrom Model and Transmittance interpolation Model (수질 영향평가 신뢰수준 향상을 위한 낙동강 유역 미관측 지점에서의 일사량 추정: 수정형 Angstrom모형과 투과율모형의 비교)

  • Lee, Khil-Ha
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.219-227
    • /
    • 2012
  • Daily solar radiation is essential for water resources planning and environmental impact assessment. However, radiation data is not commonly available in Korea other than in big cities, and there has been no direct measurement for rural areas where water resources planning and environmental impact assessment is usually most needed. In general, missing radiation data is estimated from nearby regional stations within a certain distance, and this study compared two dominant methods (modified Angstrom equation and transmittance interpolation method) at six stations in Nakdong River watershed area. Two methods shows a similar level of accuracy but the transmittance interpolation method is likely to be superior in that there is no need for any measurement element since the modified Angstrom equation require the sunshine hour measurement. This study will contribute to improve water resource and water quality management in Nakdong River watershed.

Analysis of Solar Radiation and Heat-Efficiency in Semi-Greenhouse Type Solar-Dehumidification Lumber Dryer (반온실형(半溫室型) 제습(除濕).태양열(太陽熱) 목재(木材)드라이어의 일사량(日射量)과 열효율분석(熱效率分析)에 관(關)한 연구(硏究))

  • Lee, Hyoung-Woo
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.3-12
    • /
    • 1989
  • Semi-greenhouse type solar-dehumidification drying of oak was carried out to investigate the possibility to dry wood using solar energy in Korea. The energy balance equation was set up, considering all the energy requirements, and the solar radiation was calculated to analyze the efficiencies of solar dryer with and without the dehumidifier. The average temperature inside dryer and collector rose up to $52^{\circ}C$ and $70^{\circ}C$, respectively. The average daily total beam, diffuse, and ground-reflected radiations were 7.27MJ, 8.70MJ, and 0.33MJ on the roof and 2.08MJ, 4.84MJ, and 5.37MJ on the south wall collector, respectively. Heat efficiency of solar dryer was 14.04% with dehumidifier and 13.13% without dehumidifier. The energy required to remove 1g of water from wood was 0.0289MJ/g in solar-dehumidification drying and 0.0310 MJ/g in semi-greenhouse type solar drying.

  • PDF

A Study on the Estimating Solar Radiation for Arbitrary Areas (임의의 지점에 대한 일사예측에 관한 연구)

  • Jo, D.K.;Lee, T.K.;Cho, S.H.;Chea, Y.H.;Auh, P.C.
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.25-36
    • /
    • 1989
  • It is necessary to estimate the regression coefficients in order to predict the monthly mean daily global radiation on a horizontal surface. Therefore many different equations have proposed to evaluate them for certain areas. In this work a new correlation has been made to predict the solar radiation for any area over Korea by estimating the regression coefficients taking into account latitude, percentage of possible sunshine, and cloud cover. Particularly, the single linear equation proposed by Page & Garg shows reliable results for estimating the global radiation with average deviation of -1 to 3% from the measured values.

  • PDF

Estimating Solar Radiation for Arbitrary Areas Using Empirical Forecasting Models (경험적 예측모형을 통한 임의의 지점의 일사예측)

  • Jo, D.K.;Chun, I.S.;Lee, T.K.;Auh, C.M.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.21-30
    • /
    • 2000
  • It is necessary to estimate the regression coefficients in order to predict the monthly mean daily global radiation on a horizontal surface. Therefore many different equations have proposed to evaluate them for certain areas. In this work, a new correlation has been made to predict the solar radiation for any area over Korea by estimating the regression coefficients taking into account percentage of possible sunshine, and cloud cover. Particularly, the multiple linear regression model proposed shows reliable results for estimating the global radiation with average deviation of -1 to 3 % from the measured values.

  • PDF

A Simple Method Using a Topography Correction Coefficient for Estimating Daily Distribution of Solar Irradiance in Complex Terrain (지형보정계수를 이용한 복잡지형의 일 적산일사량 분포 추정)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • Accurate solar radiation data are critical to evaluate major physiological responses of plants. For most upland crops and orchard plants growing in complex terrain, however, it is not easy for farmers or agronomists to access solar irradiance data. Here we suggest a simple method using a sun-slope geometry based topographical coefficient to estimate daily solar irradiance on any sloping surfaces from global solar radiation measured at a nearby weather station. An hourly solar irradiance ratio ($W_i$) between sloping and horizontal surface is defined as multiplication of the relative solar intensity($k_i$) and the slope irradiance ratio($r_i$) at an hourly interval. The $k_i$ is the ratio of hourly solar radiation to the 24 hour cumulative radiation on a horizontal surface under clear sky conditions. The $r_i$ is the ratio of clear sky radiation on a given slope to that on a horizontal reference. Daily coefficient for slope correction is simply the sum of $W_i$ on each date. We calculated daily solar irradiance at 8 side slope locations circumventing a cone-shaped parasitic volcano(c.a., 570m diameter for the bottom circle and 90m bottom-to-top height) by multiplying these coefficients to the global solar radiation measured horizontally. Comparison with the measured slope irradiance from April 2007 to March 2008 resulted in the root mean square error(RMSE) of $1.61MJ\;m^{-2}$ for the whole period but the RMSE for April to October(i.e., major cropping season in Korea) was much lower and satisfied the 5% error tolerance for radiation measurement. The RMSE was smallest in October regardless of slope aspect, and the aspect dependent variation of RMSE was greatest in November. Annual variation in RMSE was greatest on north and south facing slopes, followed by southwest, southeast, and northwest slopes in decreasing order. Once the coefficients are prepared, global solar radiation data from nearby stations can be easily converted to the solar irradiance map at landscape scales with the operational reliability in cropping season.

Solar Radiation Estimation Technique Using Cloud Cover in Korea (운량에 의한 일사예측 기법)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.232-235
    • /
    • 2011
  • Radiation data are the best source of information for estimating average incident radiation. Lacking this or data from nearby locations of similar climate, it is possible to use empirical relationships to estimate radiation from days of cloudiness. It is necessary to estimate the regression coefficients in order to predict the daily global radiation on a horizontal surface. There fore many different equations have proposed to evaluate them for certain areas. In this work a new correlation has been made to predict the solar radiation for 16 different areas over Korea by estimating the regression coefficients taking into account cloud cover. Particularly, the straight line regression model proposed shows reliable results for estimating the global radiation on a horizontal surface with monthly average deviation of-0.26 to +0.53% and each station annual average deviation of -1.61 to +1.7% from measured values.

  • PDF

A Detailed Analysis of Solar Radiation Resources in Korea (국내 태양에너지 자원 정밀분석)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.63.1-63.1
    • /
    • 2010
  • Since the solar energy resource is the main input for sizing any solar photovoltaic system and solar thermal power system, it is essential to utilize the solar radiation data as a application and development of solar energy system increase. It will be necessary to understand and evaluate the insolation data. The Korea Institute of Energy Research(KIER) has begun collecting horizontal global insolation data since May, 1982 at 16 different locations in Korea and for the more detailed analysis, Images taken by geostationary satellite may be used to estimate solar irradiance fluxes at earth's surface. It is based on the empirical correlation between a satellite derived cloud index and the irradiance at the ground. From the results, the measured data has been collected at 16 different stations and estimated using satellite at 23 different stations over the South Korea from 1982 to 2009. The Result of analysis shows that the annual-average daily global radiation on the horizontal surface is $3.56kWh/m^2/day$.

  • PDF

Proposal of Modified Correlation to Calculate the Horizontal Global Solar Irradiance for non-Measuring Cloud-cover Regions (운량 비측정 지역을 위한 수평면전일사량 예측 상관식의 수정모델 제안)

  • Cho, Min-Cheol;Kim, Jeongbae
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.29-33
    • /
    • 2016
  • Recently, the authors of this paper proposed newly the correlation model to calculate the horizontal global solar radiation in Korea based the Zhang-Huang (ZH) model proposed in 2002 for China. Previous study was pronounced the correlation with a new term of the duration of sunshine proved as being closely related with the hourly solar radiation in Korea into ZH model. And then another modified correlation for the regions without measuring cloud cover was proposed and evaluated the accuracy and validity for those regions. So, this study was performed to propose modified correlation to calculate the horizontal global solar irradiance of non-measuring cloud-cover regions. Finally, this study proposed the new correlation that could well predict hourly and daily total solar radiation for all regions, various seasons, and various weather conditions including overcast and clear, with higher accuracy and lower error than other models proposed ever before in Korea for non-measuring cloud-cover regions.

Analysis of the Thermal Dome Effect from Global Solar Radiation Observed with a Modified Pyranometer

  • Zo, Ilsung;Jee, Joonbum;Kim, Buyo;Lee, Kyutae
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.263-270
    • /
    • 2017
  • Solar radiation data measured by pyranometers is of fundamental use in various fields. In the field of atmospheric optics, the measurement of solar energy must be precise, and the equipment needs to be maintained frequently. However, there seem to be many errors with the existing type of pyranometer, which is an element of the solar-energy observation apparatus. In particular, the error caused by the thermal dome effect occurs because of the thermal offset generated from a temperature difference between outer dome and inner casing. To resolve the thermal dome effect, intensive observation was conducted using the method and instrument designed by Ji and Tsay. The characteristics of the observed global solar radiation were analyzed by classifying the observation period into clear, cloudy, and rainy cases. For the clear-weather case, the temperature difference between the pyranometer's case and dome was highest, and the thermal dome effect was $0.88MJ\;m^{-2}\;day^{-1}$. Meanwhile, the thermal dome effect in the cloudy case was $0.69MJ\;m^{-2}\;day^{-1}$, because the reduced global solar radiation thus reduced the temperature difference between case and dome. In addition, the rainy case had the smallest temperature difference of $0.21MJ\;m^{-2}\;day^{-1}$. The quantification of this thermal dome effect with respect to the daily accumulated global solar radiation gives calculated errors in the cloudy, rainy, and clear cases of 6.53%, 6.38%, and 5.41% respectively.