• Title/Summary/Keyword: daily rainfall

Search Result 528, Processing Time 0.022 seconds

Performance Evaluation of Rainfall Disaggregation according to Temporal Scale of Rainfall Data (강우자료의 시간해상도에 따른 강우 분해 성능 평가)

  • Lee, Jeonghoon;Jang, Juhyoung;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.345-352
    • /
    • 2018
  • In this study, rainfall data with various temporal scales (3-, 6-, 12-, 24-hr) are disaggregated into 1-hourly rainfall data to evaluate the performance of rainfall disaggregation technique. The rainfall disaggregation technique is based on a database generated by the stochastic point rainfall model, the Neyman-Scott Rectangular Pulse Model (NSRPM). Performance evaluation is carried out using July rainfall data of Ulsan, Changwon, Busan and Milyang weather stations in Korea. As a result, the rainfall disaggregation technique showed excellent performance that can consider not only the major statistics of rainfall but also the spatial correlation. It also indirectly shows the uncertainty of future climate change scenarios with daily temporal scale. The rainfall disaggregation technique is expected to disaggregate the future climate change scenarios, and to be effective in the future watershed management.

A Study on the Water Quality Affected by the Rainfall and Influent Rivers in Paldang Reservoir, Korea (강우 및 유입 하천수가 팔당호 수질에 미치는 영향분석)

  • Kim, Jongmin;Noh, Hyeran;Heo, Seongnam;Yang, Heejeong;Park, Jundae
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.277-283
    • /
    • 2005
  • This paper aimed to compare the daily water quality as well as the hydrological data gathered for the past two years (2000 to 2001) between the two influent rivers of Paldang reservoir. The analysis also has been carried out to draw out the factors that affect the water quality at the dam site, where the main drinking water drawing point is located. The relationship between total amount of monthly rainfall and monthly inflow showed $r^2=0.74$ (p<0.05). The highest peak of inflow of influent rivers recorded in August and September (in the year of 2000) and July and August (2001). Average inflows of influent rivers in 2000 and 2001 are calculated at 209.0, 161.5 CMS (Bughangang), 268.6, 148.2 CMS(Namhangang), and 7.8, 5.0 CMS (Gyeongancheon). The formula which was driven from the relationship between inflow and COD load of influent rivers, explained that COD concentration in general increased with the inflow. But during the rainy seasons (July, August, and September), COD concentration decreased according to the increase of inflow. The daily rainfall and COD concentration(or load) during the rainy season (August and September in the year of 2000, July and August in 2001) indicated that the peak of COD load correspond with the rainfall, which decreased sharply after 3 or 4 days. The reason was thought that the high COD load was diluted rapidly by the rain flow. Water temperature, pH and conductivity measured at dam site decreased obviously when the inflow sharply increased. Peak period of total phosphorus concentration coincided with that of inflow. In rainy season, chlorophyll-a concentration decreased obviously as the inflow increased. The reason can be ascribed to the flushing effect caused by the operation of floodgate.

Non-stationary frequency analysis of monthly maximum daily rainfall in summer season considering surface air temperature and dew-point temperature (지표면 기온 및 이슬점 온도를 고려한 여름철 월 최대 일 강수량의 비정상성 빈도해석)

  • Lee, Okjeong;Sim, Ingyeong;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.338-344
    • /
    • 2018
  • In this study, the surface air temperature (SAT) and the dew-point temperature (DPT) are applied as the covariance of the location parameter among three parameters of GEV distribution to reflect the non-stationarity of extreme rainfall due to climate change. Busan station is selected as the study site and the monthly maximum daily rainfall depth from May to October is used for analysis. Various models are constructed to select the most appropriate co-variate(SAT and DPT) function for location parameter of GEV distribution, and the model with the smallest AIC(Akaike Information Criterion) is selected as the optimal model. As a result, it is found that the non-stationary GEV distribution with co-variate of exp(DPT) is the best. The selected model is used to analyze the effect of climate change scenarios on extreme rainfall quantile. It is confirmed that the design rainfall depth is highly likely to increase as the future DPT increases.

Conversion Factor Calculation of Annual Maximum Precipitation in Korea Between Fixed and Sliding Durations (고정시간과 임의시간에 따른 우리나라 연최대강우량의 환산계수 산정)

  • Oh, Tae Suk;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.515-524
    • /
    • 2008
  • An estimation of reliable probability precipitation is one of the most important processes for reasonable hydrologic structure design. A probability precipitation has been calculated by frequency analysis using annual maximum rainfall series on the each duration among the observed rainfall data. Annual maximum rainfall series have abstracted on hourly rainfall data or daily rainfall data. So, there is necessary to proper conversion factor between the fixed and sliding durations. Therefore, in this study, conversion factors on the each duration between fixed and sliding durations have calculated using minutely data compared to hourly and daily data of 37 stations observed by Meteorological Administration in Korea. Also, regression equations were computed by regression analysis of conversion factors on the each duration. Consequently, conversion factors were used basis data for calculations of stable probability precipitation.

A Study on the alternative daily cover and envelop materials of PS Ball slag (PS Ball 풍쇄슬래그의 일일복토재 및 집배수재 재활용을 위한 연구)

  • Kim, Sang-Keun;Chung, Ha-Ik;Song, Bong-Jun;Chang, Won-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1408-1411
    • /
    • 2005
  • The purposes of daily cover are to control odor and volatile organic compound emissions, to control litters, to mitigate rainfall infiltration. Under usual operation of landfill, the soil layer of 15cm thick is used for daily cover, but about $20{\sim}$25% of landfill capacity is consumed by daily cover volume. Considering our limited land and difficulty in getting landfill site, developing an alternative daily cover material which usually occupies much less volume than soil will be very significant. Also, if we can use waste material for alternative daily cover, we can get additional benefit of recycling waste.

  • PDF

Estimation of the Groundwater Movement Under the Heavyrainfall at Nanji Waste Landfill (집중호우시 발생하는 난지도 매립지내의 지하수 거동)

  • 구태훈;조원철
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.107-117
    • /
    • 2001
  • The characteristics of groundwater movement under the heavy rainfall at Nan-ji waste landfill site are studied using HELP(Hydraulic Evaluation of Landfill Performance) program, which calculates the daily leachate in the Nan-ji waste landfill site. In this study, instead of the average recharge value, which is used in the past study, the real reacharge value is used to calculate the daily leachater. It is found about 70 times greater than thor average recharge value under the condition of heavy rainfall in the rainy season. The flow characteristics of groundwater for water level fluctuation is simulated using the ground water flow model MODFLOW(A Modular 3-D Finite Different Groundwater Flow Model) program, and the slurry layer is newly added. The result of the study is different from that of the ordinary simulation, which shows much higher ground water level than from the ordinary simulation.

  • PDF

Historical changing of flow characteristics over Asian river basins

  • Ha, Doan Thi Thu;Kim, Tae-Son;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.118-118
    • /
    • 2020
  • This study investigates the change of flow characteristics over 10 Asian river basins in the past 30 years (1976-2005). The variation is estimated from The Soil and Water Assessment Tool (SWAT) model outputs based on reanalysis data which was bias-corrected for Asian monsoon reagion. The model was firstly calibrated and validated using observed data for daily streamflow. Four statistical criteria were applied to evaluate the model performance, including Coefficient of determination (R2), Nash - Sutcliffe model efficiency coeffi cient (NSE), Root mean square error-observations standard deviation ratio (RSR), and Percentage Bias (PBIAS). Then parameters of the model were applied for the historical period 1976-2005. The estimates show a temporal non-considerable increasing rate of daily streamflow in most of the basins over the past 30 years. The difference of monthly discharge becomes more significant during the months in the wet season (June to September) in all basins. The seasonal runoff shows significant difference in Summer and Autumn, when the rainfall intensity is higher. The line showing averaged runoff/rainfall ratio in all basins is sharp, presenting high variation of seasonal runoff/rainfall ratio from season to season.

  • PDF

On Proper Variograms of Daily Rainfall Data (일강우량의 적정 베리오그램)

  • Park, Minkyu;Park, Changyeol;Shin, Key-Il;Yoo, Chulsang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.525-532
    • /
    • 2010
  • Kriging is widely applied to dealing with the spatial distribution of rainfall, however its prediction results are different according to the selection of variogram type. This study investigated adequate variogram for daily rainfall. The comparative results show that kriging prediction with covariates is better than that without covariates. The Mat$\acute{e}$rn correlation function, which is the most general type variogram, is recommended if adequate variogram is difficult to determine.

Determination of Unit Hydrograph for the Hydrological Modelling of Long-term Run-off in the Major River Systems in Korea (장기유출의 수문적 모형개발을 위한 주요 수계별 단위도 유도)

  • 엄병현;박근수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.4
    • /
    • pp.52-65
    • /
    • 1984
  • In general precise estimation of hourly of daily distribution of the long-term run-off should be very important in a design of source of irrigation. However, there have not been a satisfying method for forecasting of stationar'y long-term run-off in Korea. Solving this problem, this study introduces unit-hydrograph method frequently used in short-term run-off analysis into the long-term run-off analysis, of which model basin was selected to be Sumgin-river catchment area. In the estimation of effective rainfall, conventional method neglects the Soil moisture condition of catchment area, but in this study, the initial discharge (qb) occurred just before rising phase of the hydrograph was selected as the index of a basin soil moisture condition and then introduced as 3rd variable in the analysis of the reationship between cumulative rainfall and cumulative loss of rainfall, which built a new type of separation method of effective rainfall. In next step, in order to normalize significant potential error included in hydrological data, especially in vast catchment area, Snyder's correlation method was applied. A key to solution in this study is multiple correlation method or multiple regressional analysis, which is primarily based on the method of least squres and which is solved by the form of systems of linear equations. And for verification of the change of characteristics of unit hydrograph according to the variation of a various kind of hydrological charateristics (for example, precipitation, tree cover, soil condition, etc),seasonal unit hydrograph models of dry season(autumn, winter), semi-dry season (spring), rainy season (summer) were made respectively. The results obtained in this study were summarized as follows; 1.During the test period of 1966-1971, effective rainfall was estimated for the total 114 run-off hydrograph. From this estimation results, relative error of estimation to the ovservation value was 6%, -which is mush smaller than 12% of the error of conventional method. 2.During the test period, daily distribution of long-term run-off discharge was estimated by the unit hydrograph model. From this estimation results, relative error of estimation by the application of standard unit hydrograph model was 12%. When estimating by each seasonal unit bydrograph model, the relative error was 14% during dry season 10% during semi-dry season and 7% during rainy season, which is much smaller than 37% of conventional method. Summing up the analysis results obtained above, it is convinced that qb-index method of this study for the estimation of effective rainfall be preciser than any other method developed before. Because even recently no method has been developed for the estimation of daily distribution of long-term run-off dicharge, therefore estimation value by unit hydrograph model was only compared with that due to kaziyama method which estimates monthly run-off discharge. However this method due to this study turns out to have high accuracy. If specially mentioned from the results of this study, there is no need to use each seasonal unit hydrograph model separately except the case of semi-dry season. The author hopes to analyze the latter case in future sudies.

  • PDF

Evaluation of SATEEC Daily R Module using Daily Rainfall (일강우를 고려한 SATEEC R 모듈 적용성 평가)

  • Woo, Wonhee;Moon, Jongpil;Kim, Nam Won;Choi, Jaewan;Kim, Ki-sung;Park, Youn Shik;Jang, Won Seok;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.841-849
    • /
    • 2010
  • Soil erosion is an natural phenomenon. However accelerated soil erosion has caused many environmental problems. To reduce soil loss from a watershed, many management practices have been proposed worldwide. To develop proper and efficient soil erosion best management practices, soil erosion rates should be estimated spatially and temporarily. The Universal Soil Loss Equation (USLE) and USLE-based soil erosion and sediment modelling systems have been developed and tested in many countries. The Sediment Assessment Tool for Effective Erosion Control (SATEEC) system has been developed and enhanced to provide ease-of-use interface to the USLE users. However many researchers and decision makers have requested to enhance the SATEEC system for simulation of soil erosion and sediment reflecting effects of single storm event. Thus, the SATEEC R factors were estimated based on 5 day antecedent rainfall data. The SATEEC 2.1 daily R factor was applied to the study watershed and it was found that the R2 and EI values (0.776 and 0.776 for calibration and 0.927 and 0.911 for validation) with the daily R were greater than those (0.721 and 0.720 for calibration and 0.906 and 0.881 for validation) with monthly R, which was available in the SATEEC 2.0 system. As shown in this study, the SATEEC with daily R can be used to estimate soil erosion and sediment yield at a watershed scale with higher accuracy. Thus the SATEEC with daily R can be efficiently used to develop site-specific soil erosion best management practices based on spatial and temporal analysis of soil erosion and sediment yield at a daily-time step, which was not possible with USLE-based soil erosion modeling system.