• Title/Summary/Keyword: daily monitoring

Search Result 758, Processing Time 0.026 seconds

Analysis of Groundwater Level Changes Near the Greenhouse Complex Area Using Groundwater Monitoring Network (지하수관측망을 이용한 강변 시설재배지역 지하수위 변화 특성 분석)

  • Baek, Mi Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.13-23
    • /
    • 2022
  • The purpose of this study was to analyze the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes, which are mainly situated along rivers where water resources are easy to secure. The groundwater observation network in Miryang, Gyeongsangnam-do, located downstream of the Nakdong River, was selected for the study area. We classified the groundwater monitoring well into the greenhouse (riverside) and field cultivation areas (plain and mountain) to compare the groundwater impact of water curtain cultivation in the greenhouse complex. The characteristics of groundwater level changes classified by terrain type were analyzed using the observed data. Riverside wells have significant permeability coefficients and are close to rivers, so they are greatly affected by river flow and precipitation changes so that water level shows a specific pattern of annual changes. Most plain wells do not show a constant annual change, but observation wells near small rivers and small-scale greenhouse cultivation areas sometimes show annual and daily changes in which the water level drops during winter. Compared to other observation wells, mountain wells do not show significant yearly changes in water level and show general characteristics of bedrock aquifer well with a low permeability coefficient.

Application of Convolutional Neural Networks (CNN) for Bias Correction of Satellite Precipitation Products (SPPs) in the Amazon River Basin

  • Alena Gonzalez Bevacqua;Xuan-Hien Le;Giha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.159-159
    • /
    • 2023
  • The Amazon River basin is one of the largest basins in the world, and its ecosystem is vital for biodiversity, hydrology, and climate regulation. Thus, understanding the hydrometeorological process is essential to the maintenance of the Amazon River basin. However, it is still tricky to monitor the Amazon River basin because of its size and the low density of the monitoring gauge network. To solve those issues, remote sensing products have been largely used. Yet, those products have some limitations. Therefore, this study aims to do bias corrections to improve the accuracy of Satellite Precipitation Products (SPPs) in the Amazon River basin. We use 331 rainfall stations for the observed data and two daily satellite precipitation gridded datasets (CHIRPS, TRMM). Due to the limitation of the observed data, the period of analysis was set from 1st January 1990 to 31st December 2010. The observed data were interpolated to have the same resolution as the SPPs data using the IDW method. For bias correction, we use convolution neural networks (CNN) combined with an autoencoder architecture (ConvAE). To evaluate the bias correction performance, we used some statistical indicators such as NSE, RMSE, and MAD. Hence, those results can increase the quality of precipitation data in the Amazon River basin, improving its monitoring and management.

  • PDF

A Derivation of Aerosol Optical Depth Estimates from Direct Normal Irradiance Measurements

  • Yun Gon Lee;Chang Ki Kim
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.79-87
    • /
    • 2024
  • This study introduces a method for estimating Aerosol Optical Depth (AOD) using Broadband Aerosol Optical Depth (BAOD) derived from direct normal irradiance and meteorological factors observed between 2016 and 2017. Through correlation analyses between BAOD and atmospheric components such as Rayleigh scattering, water vapor, and tropospheric nitrogen dioxide, significant relationships were identified, enabling accurate AOD estimation. The methodology demonstrated high correlation coefficients and low Root Mean Square Errors (RMSE) compared to actual AOD500 measurements, indicating that the attenuation effects of water vapor and the direct impact of tropospheric nitrogen dioxide concentration are crucial for precise aerosol optical depth estimation. The application of BAOD for estimating AOD500 across various time scales-hourly, daily, and monthly-showed the approach's robustness in understanding aerosol distributions and their optical properties, with a high coefficient of determination (0.96) for monthly average AOD500 estimates. This study simplifies the aerosol monitoring process and enhances the accuracy and reliability of AOD estimations, offering valuable insights into aerosol research and its implications for climate modeling and air quality assessment. The findings underscore the viability of using BAOD as a surrogate for direct AOD500 measurements, presenting a promising avenue for more accessible and accurate aerosol monitoring practices, crucial for improving our understanding of aerosol dynamics and their environmental impacts.

Real-time Monitoring of Environmental Properties at Seaweed Farm and a Simple Model for CO2 Budget (해조양식장 수질환경 모니터링을 통한 이산화탄소 단순 수지모델)

  • Shim, Jeong Hee;Kang, Dong-Jin;Han, In Sung;Kwon, Jung No;Lee, Yong-Hwa
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.243-251
    • /
    • 2012
  • Real-time monitoring for environmental factors(temperature, salinity, chlorophyll, etc.) and carbonate components( pH and $fCO_2$) was conducted during 5-6th of July, 2012 at a seaweeds farm in Gijang, Busan. Surface temperature and salinity were ranged from $12.5{\sim}17.6^{\circ}C$ and 33.7~34.0, respectively, with highly daily and inter-daily variations due to tide, light frequency(day and night) and currents. Surface $fCO_2$ and pH showed a range of $381{\sim}402{\mu}atm$ and 8.03~8.15, and chlorophyll-a concentration in surface seawater ranged 0.8~5.8 ${\mu}g\;L^{-1}$. Environmental and carbonate factors showed the highest/lowest values around 5 pm of 5th July when the lowest tidal height and strongest thermocline in the water column, suggesting that biological production resulted in decrease of $CO_2$ and increase of pH in the seaweed farm. Processes affecting the surface $fCO_2$ distribution were evaluated using a simple budget model. In day time, biological productions by phytoplankton and macro algae are the main factors for $CO_2$ drawdown and counteracted the amount of $CO_2$ increase by temperature and air-sea exchange. The model values were a little higher than observed values in night time due to the over-estimation of physical mixing. The model suggested that algal production accounted about 14-40% of total $CO_2$ variation in seaweed farm.

Precision monitoring of radial growth of trees and micro-climate at a Korean Fir (Abies koreana Wilson) forest at 10 minutes interval in 2016 on Mt. Hallasan National Park, Jeju Island, Korea

  • Kim, Eun-Shik;Cho, Hong-Bum;Heo, Daeyoung;Kim, Nae-Soo;Kim, Young-Sun;Lee, Kyeseon;Lee, Sung-Hoon;Ryu, Jaehong
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.226-245
    • /
    • 2019
  • To understand the dynamics of radial growth of trees and micro-climate at a site of Korean fir (Abies koreana Wilson) forest on high-altitude area of Mt. Hallasan National Park, Jeju Island, Korea, high precision dendrometers were installed on the stems of Korean fir trees, and the sensors for measuring micro-climate of the forest at 10 minutes interval were also installed at the forest. Data from the sensors were sent to nodes, collected to a gateway wireless, and transmitted to a data server using mobile phone communication system. By analyzing the radial growth data for the trees during the growing season in 2016, we can estimate that the radial growth of Korean fir trees initiated in late April to early May and ceased in late August to early September, which indicates that period for the radial growth was about 4 months in 2016. It is interesting to observe that the daily ambient temperature and the daily soil temperature at the depth of 20 cm coincided with the values of about 10 ℃ when the radial growth of the trees initiated in 2016. When the radial growth ceased, the values of the ambient temperature went down below about 15 ℃ and 16 ℃, respectively. While the ambient temperature and the soil temperature are evaluated to be the good indicators for the initiation and the cessation of radial growth, it becomes clear that radii of tree stems showed diurnal growth patterns affected by diurnal change of ambient temperature. In addition, the wetting and drying of the surface of the tree stems affected by precipitation became the additional factors that affect the expansion and shrinkage of the tree stems at the forest site. While it is interesting to note that the interrelationships among the micro-climatic factors at the forest site were well explained through this study, it should be recognized that the precision monitoring made possible with the application of high resolution sensors in the measurement of the radial increment combined with the observation of 10 minutes interval with aids of information and communication technology in the ecosystem observation.

Monitoring of Pesticide Residues and Risk Assessment in Some Fruits on the Market in Incheon, Korea (인천지역 유통 과일 중 잔류농약 모니터링 및 위해성 평가)

  • Chung, Se Jin;Kim, Hye Young;Kim, Ji Hyeung;Yeom, Mi Suk;Cho, Joong Hee;Lee, Soo Yeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.2
    • /
    • pp.111-120
    • /
    • 2014
  • BACKGROUND: This study was conducted to investigate the levels of pesticide residues in fruits and to assess their risk to human health. METHODS AND RESULTS: Monitoring of 215 samples of fruits collected from local markets in incheon during 2013 was performed. 259 pesticides were analyzed by multi-residue method and Quick, Easy, Cheap, Effective, Rugged, and safe/Mass/Mass(QuEChERS/MS/MS) method using Gas Chromatography-Electron Capture Detector/Nitrogen Phosphorus Detector(GC-ECD/NPD), GC-MS, LC(Liquid Chromatography-Mass/Mass(LC-MS/MS) and High Performance Liquid Chromatography-Photodiode Array/Fluorescence Detector(HPLC-PDA/FLD). In 56.3% of the samples detected pesticide residues and were not found to exceed Maximum Residue Limits(MRL). The highest detected samples were found in citrus fruits(83.9%). Among the detected compounds, carbendazim(13.1%), imazalil (11.7%), thiabendazole(10.7%) and fludioxonil(9.8%) were frequently found in fruits. A risk assessment of pesticide residues in fruits was performed by calculating Estimated Daily Intake(EDI) and Acceptable Daily Intake(ADI). Also, we were evaluated removal efficiency of pesticide residues by washing and peeling. The removal efficiency of pesticide residues in citrus and tropical fruits by peeling processes were 91.6%. After the washing process, the removal rates were 43.1%(Cherry, Grape, Blueberry). CONCLUSION: The level of pesticide residues in fruits was within the MRL. The range of %ADI values was from 0.00011 to 0.98795%. The process of washing or peeling reduces the level of pesticide residues. The results of this research concluded that the detected pesticides are not harmful to human being.

Assessment of Nutritional Status by Estimation of Nutrients and Food Intakes of the Lead Workers in Republic of Korea

  • Kim, Hee-Seon;Song, Ok-Young;Lee, Sung-Soo;Young Hwangbo;Ahn, Kyu-Dong;Lee, Byung-Kook
    • Nutritional Sciences
    • /
    • v.4 no.2
    • /
    • pp.91-97
    • /
    • 2001
  • The purpose of this study was to assess the nutritional status of Korean workers with occupational exposure to lead by estimating nutrients and flood intakes so that we can eventually establish the dietary guidelines to be recommended for the lead workers. Food consumption survey was conducted by a 24-hr recall method with 135 lead workers and 50 non-exposed controls. Food intake data were convened into nutrients intake using computer aided nutritional analysis program. Mean daily energy intake and percentage of recommended daily allowance (RDA) of male lead workers were 2138 local and 87% of RDA while those of control were estimated as 2234 kcal and 91% of RDA. Mean daily intakes of nutrients of male lead workers were 78 g (111% RDA) for protein 502 mg (71% RDA) for calcium, 11.7 mg (97% RDA) for iron, 665 $\mu$g R.E (95% RDA) for vitamin A, 1.39 mg (108% RDA) for thiamin, 1.14 mg (77% RDA) for riboflavin, 15 mg N.E (92% RDA) for niacin and 66 mg (94% RDA) for vitamin C. On average, male lead workers showed significantly lower protein, calcium, iron, sodium, potassium, niacin and vitamin C intakes than control group while cholesterol intake of the male lead workers was significantly higher than that of control group. Intakes of calcium of male lead workers were Less than 75% RDA meaning that nutritional intake of calcium of male lead workers was insufficient and could possibly result in nutritional deficient. Some food groups such as milk, meat and fish must be strongly suggested to improve nutritional status of lead workers. Continuing nutrition monitoring and appropriate nutrition intervention for lead workers most be conducted further.

  • PDF

Conditioning of Manila clam Ruditapes philippinarum (Adams & Reeve, 1850) using recirculation system: I. Induction of the gametogenesis using water temperature elevation (순환여과시스템을 이용한 바지락 Ruditapes philippinarum (Adams & Reeve, 1850) 의 번식 생리에 관한 연구: I. 가온에 의한 성 성숙 유도)

  • Lee, Hee-Jung;Park, Kyung-Il;Choi, Kwang-Sik
    • The Korean Journal of Malacology
    • /
    • v.30 no.2
    • /
    • pp.127-134
    • /
    • 2014
  • Gonad maturation of Manila clam, Ruditapes philippinarum was induced in this study using a recirculation system over 8 weeks in early spring. Clams used in the experiment were collected in $15^{th}$ April 2010 from the west coast of Korea, as the surface water temperature remained $11^{\circ}C$. To induce gametogenesis and subsequent maturation seawater temperature was elevated $1^{\circ}C$ per day over 10 days to reach $20^{\circ}C$. For the experiment, clams were raised in 120 L quadrangle tank maintained with re-circulated seawater system over 57 days. Water quality parameters including the water temperature, salinity dissolved oxygen, ammonium ion and nitrate levels in the tanks were monitored daily. Mixture of concentrated microalgae including Tetraselmis, Isochrysis, Pavlova and Thalassiosira weissflogii was supplied to clams twice a day, and quantity of the daily ration was adjusted as 3% of clam body dry weight. Histology was applied to examine gonad maturation. Daily monitoring of the water quality parameters indicated that the recirculation system supplied suitable environment to Manila clam; the nitrogenous components stayed below toxic levels (< 0.2 mg/L). At the beginning of the study, clams were mostly in early developing stage. As the seawater temperature reached $20^{\circ}C$, 10 days after the experiment, 20% of clams reached late development at 12 days. First ripe clams were observed at 42 days and 40% of clams were in ripe and ready for spawning at the end of study, 57 days after the experiment. In this study, gametogenesis of Manila clam was successfully induced by elevating water temperature and supplying commercially produced microalgae in a recirculation tank system.

Evaluation of Short-Term Drought Using Daily Standardized Precipitation Index and ROC Analysis (일 단위 SPI와 ROC 분석을 이용한 단기가뭄의 평가)

  • Yoo, Ji Young;Song, Hoyong;Kim, Tae-Woong;Ahn, Jae-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1851-1860
    • /
    • 2013
  • The Standardized Precipitation Index (SPI) is widely applied to evaluate for meteorological droughts. However, the SPI is limited to capture a drought event with a short duration, expecially shorter than one month. In this study, we proposed a daily SPI (DSPI) as a way to overcome the limitation of the monthly SPI for drought monitoring. In order to objectively assess the ability of the drought reproduction of the DSPI, we performed a receiver operating characteristic (ROC) analysis using the quantified drought records from official reports, newspapers, etc. The results of ROC analysis showed that the DSPI has an ability to reproduce short-term drought compared with other indices. It also showed that the main cause of historical droughts was the shortage of rainfall accumulated during the time period less than 90 days compared with the rainfall of normal years.

PM10 Mass Concentration at Keumgangsan, North Korea - from September 2007 to May 2008 - (금강산(金剛山)에서 관측한 미세먼지 농도 - 2007년 9월부터 2008년 5월까지 -)

  • Kim, Jeong Eun;Shim, Wonbo;Lim, Jaechul;Chun, Youngsin
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.447-454
    • /
    • 2011
  • As dust storms originated in Neimongu Plateau and Manchuria became more frequent in Korea, there was a growing need for Asian Dust (Hwangsa) monitoring stations in North Korea, which is a pathway of Asian Dust to South Korea. The South Korean and the North Korean Governments agreed to build the Automatic Weather System and the PM10 measurement instruments in the Gaeseong Industrial Zone and the Keumgangsan Tourist Region, North Korea in 2007. PM10 mass concentration data in the Keumgangsan Tourist Region could be collected only during the period from September 2007 to May 2008. In this study, daily, monthly and diurnal variations of PM10 mass concentration of the Keumgangsan are analyzed and compared with those of Sokcho and Gwangdeoksan. Three sites show similar variations in daily and monthly means. Correlation coefficients (r) between Sokcho and Keumgangsan, and between Gwangdeoksan and Keumgangsan are 0.89 and 0.67, respectively. But diurnal variation at Keumgangsan has a distinct feature compared to the other sites. Diurnal PM10 variation shows two peaks around 8 AM and 4-5 PM and very low at night. The difference between the daily maximum and minimum is $20{\sim}60{\mu}g\;m^{-3}$ during September to November 2007. Temperature, relative humidity and wind speed from the Keumgangsan AWS data were compared with those from the Changjon station, and showed good correlation each other except wind speed.