• Title/Summary/Keyword: daily monitoring

Search Result 758, Processing Time 0.026 seconds

On the Characteristics of the SO$_2$ Concentration Variation in Pusan, Korea (부산 지역의 SO$_2$ 농도 변화 특성에 관한 고찰)

  • 전병일;김유근;이화운
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.245-251
    • /
    • 1994
  • We considered that characteristics of SO$_2$, concentration level and relations of the meteorological parameters and high pollution concentration from the data measured 7 air quality continuous monitoring stations during 4 years, from 1990 to 1993 in Pusan. The SO$_2$ concentration level showed decreasing trend yearly, it was maximum in Winter, minimum in Summer. The time of SO$_2$ peak concentration lagged from seashore to land because of break-down of the nocturnal inversion layer and seabreeze. Ihe correlations of daily SO$_2$, value between various air quality continuous monitoring stations were highest between Beomcheondong and Meongryundong, lowest between Daeyeondong and Sinpyeongdong because of difference of air Pollution emission sources characteristic. The meteorological parameters affecting SO$_2$ concentration level were minimum temperature, relative humidity, wind speed and air pressure. The SO$_2$ high pollution($\geq$95ppb) occurred almost in Winter, particulaly in such day showing lower wind speed and higher air pressure. Elementary SO$_2$ high Pollution Predictor were high pressure system and stability of lower atmosphere.

  • PDF

Methodology of Human Cancer Risk Assessment for Chemical Carcinogens (화학 발암물질에 대한 인체 암 위해성 평가)

  • Lee, Byung-Mu
    • Toxicological Research
    • /
    • v.8 no.2
    • /
    • pp.317-329
    • /
    • 1992
  • Fifty chemicals are currently classified as human carcinogens based on epidemiologic and animal data. Humans are daily exposed to them from various sources of exposure via inhalation, dermal contact and oral ingestion. To reduce cancer risk to man, these human carcinogens should be appropriately regulated and monitored environmentally or biologically for routine human cancer risk assessment. A number of mathematical risk assessment models have been introduced, but any realistic and relevant model system is not available for humans. A mechanistic process for human cancer risk assessment was comprehensively reviewed and problems were also discussed. Here, a new conceptual approach using epidemiology and biological human monitoring was suggested for the most relevant method to study human cancer risk assessment.

  • PDF

Trends in Intelligent Radar Technology (지능형 레이더 기술 동향)

  • Koo, B.T.;Park, P.J.;Han, S.H.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.2
    • /
    • pp.12-21
    • /
    • 2021
  • Intelligent radar sensors are applied in many industries, such as the automobile, aerospace, and defense industries (for security and surveillance), and for traffic monitoring and management as well as environmental and weather monitoring. Furthermore, they are used in smart cities, homes, and buildings, wherein intelligent motion sensing is required in daily life. It is mentioned that it is being used. In addition, ETRI introduces a phased array-based intelligent radar for drone detection and a human name detection radar technology based on which humans can be detected in case of a disaster.

A study of applying soil moisture for improving false alarm rates in monitoring landslides (산사태 모니터링 오탐지율 개선을 위한 토양수분자료 활용에 관한 연구)

  • Oh, Seungcheol;Jeong, Jaehwan;Choi, Minha;Yoon, Hongsik
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1205-1214
    • /
    • 2021
  • Precipitation is one of a major causes of landslides by rising of pore water pressure, which leads to fluctuations of soil strength and stress. For this reason, precipitation is the most frequently used to determine the landslide thresholds. However, using only precipitation has limitations in predicting and estimating slope stability quantitatively for reducing false alarm events. On the other hand, Soil Moisture (SM) has been used for calculating slope stability in many studies since it is directly related to pore water pressure than precipitation. Therefore, this study attempted to evaluate the appropriateness of applying soil moisture in determining the landslide threshold. First, the reactivity of soil saturation level to precipitation was identified through time-series analysis. The precipitation threshold was calculated using daily precipitation (Pdaily) and the Antecedent Precipitation Index (API), and the hydrological threshold was calculated using daily precipitation and soil saturation level. Using a contingency table, these two thresholds were assessed qualitatively. In results, compared to Pdaily only threshold, Goesan showed an improvement of 75% (Pdaily + API) and 42% (Pdaily + SM) and Changsu showed an improvement of 33% (Pdaily + API) and 44% (Pdaily + SM), respectively. Both API and SM effectively enhanced the Critical Success Index (CSI) and reduced the False Alarm Rate (FAR). In the future, studies such as calculating rainfall intensity required to cause/trigger landslides through soil saturation level or estimating rainfall resistance according to the soil saturation level are expected to contribute to improving landslide prediction accuracy.

Evaluation of Incremental Reactivity and Ozone Production Contribution of VOCs Using the PAMS Data in Seoul Metropolitan Area (수도권에서 오존생성 기여도 산출에 관한 연구)

  • Lee, J.H.;Han, J.S.;Yun, H.K.;Cho, S.Y.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.3
    • /
    • pp.286-296
    • /
    • 2007
  • Ozone creation potentials suited for Seoul metropolitan area was derived by utilizing the PAMS monitoring data and the source inventory. A simple box model with variable height was developed to calculate the incremental reactivity for all the ozone episode days in the year 2003 and 2004. RIR (Relative Incremental Reactivity) was introduced as a measure of contribution to ozone generation in the Seoul metropolitan area. RIR was defined as a function of ratio of VOC to $NO_x$ and therefore it addresses both VOC and $NO_x$ limited regime. For the days that more than 10 monitoring stations out of 27 monitoring station in Seoul recorded the daily maximum ozone concentrations higher than 70 ppb, toluene had the highest RIR value in all the type II and type III PAMS site and m/p-xylene followed with the second highest RIR value. Analyses using MIR (Maximum Incremental Reactivity) and POCP (Photochemical Ozone Creation Potential) instead of RIR also yields dominance of toluene and m/p-xylene in generating ozone concentrations to demonstrate the validity of RIR.

Non-intrusive measurement of pulse arrival time and Estimation of Systolic Blood Pressure (무구속적 맥파 전달 시간의 측정을 통한 혈압 추정)

  • Chee, Young-Joon;Park, Kwang-Suk
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.489-492
    • /
    • 2005
  • Even though the blood pressure is one of the most widely used index for the healthcare monitoring of hypertensive and normotensive persons, there is no non-intrusive measurement method which is commercialized until now. Pulse Arrival Time (PAT) is known that it has close relation with the systolic blood pressure (SBP) and arterial stiffness. In this study, SBP estimation methods by non-intrusive measurement of PAT are suggested. For the unconstrained measurement of PAT, the first method used the electrically non contact electrocardiogram (ENC-ECG) technique and the reflective type of Photoplethysmography (PPG) sensor on the computer mouse. In the second method, ENC-ECG and the air pressure sensor in the seat cushion on a chair were measured. The third method used ECG electrodes and PPG sensors on the toilet seat cover. The validation and regression analysis of the relationship of PAT and SBP are summarized. These methods have considerable errors to be used for all people. But these can be applied for each subject after the parameter customization within acceptable error. So, it is feasible for suggested methods to be used for monitoring of SBP in daily life in non-intrusive way when there is personal identification system of each subject.

  • PDF

Evaluation of Temporal and Spatial PM10 Characteristics for Pollution Management in Daegu area (대구지역 PM10 오염 관리를 위한 시간적 및 공간적 오염 특성 평가)

  • Jo, Wan Geun;Gwon, Gi Dong
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.27-36
    • /
    • 2004
  • Present study analyzed the temporal and spatial characteristics of PM10 pollution in Metropolitan Daegu area based on air pollution monitoring station data and measurements of PM10 concentrations in background area in order to provide essential data for efficient PM10 pollution management. The significant variation of spatial and temporal PM10 concentrations in Daegu area was observed during the study years. The highest maximum PM10 concentration(332 $\mu\textrm{g}$/㎥), average concentration(88 $\mu\textrm{g}$/㎥) and frequency exceeding PM10 daily standard(150 $\mu\textrm{g}$/㎥) were all observed in Namsandong located near a major roadway. The hourly and weekly variations of PM10 concentrations had different pattern for the measurement sites. The monthly and seasonal concentrations exhibited a notable characteristic: the maximum concentration was obtained in spring season, most likely due to Yellow sand effects. Furthermore, this temporal variation of PM10 pollution varied with study site. Meanwhile, the PM10 values measured at the monitoring site, Manchondong, were comparable with those of a control site. The average PM10 concentration ranged from 23 $\mu\textrm{g}$/㎥ to 115 $\mu\textrm{g}$/㎥ with a mean value of 53 $\mu\textrm{g}$/㎥ in the former site and from 22 $\mu\textrm{g}$/㎥ to 91 $\mu\textrm{g}$/㎥ with a mean value of 45 $\mu\textrm{g}$/㎥ in the latter site.

Estimation of Human Carcinogenic Potency (HCP) of Carcinogens in Risk Assessment and Management. (위해성 평가 및 관리에 있어서 발암물질의 인체발암능력 평가)

  • 이병무;김대영;김세기;김근종
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.1
    • /
    • pp.39-45
    • /
    • 1999
  • Human Carcinogenic Potency (HCP) can be estimated based on human daily exposure dose to carcinogen (Dh), body weight (Wh), 10% tumorigenic dose (TD10), and slope factor at TD10 (Q10) from 2-yr bioassay data. This approach is more relevant to humans generally exposed to low doses of carcinogens and can reduce more of extrapolation errors from high dose in animal experiments to low dose in humans than HERP (human exposure dose/rodent potency dose) proposed by Ames et al. (Science, 236, 271-280, 1987). TD50 and HERP have been routinely used to compare rodent carcinogenic potency and human carcinogenic potency, but those approaches have had limitations in extrapolation of high dose to low dose in humans. The advantages of HCP are to estimate human exposure dose (Dh) by human monitoring instead of environmental monitoring, to consider slope factor (Q10) which reflects the tendency of curve at low dose, and to use TD10 which represents much lower dose thant TD50 or HERP. HCP will be a useful parameter for the estimation of human carcinogenic potency in risk assessment and management of carcinogens.

Implementation of Extended Kalman Filter for Real-Time Noncontact ECG Signal Acquisition in Android-Based Mobile Monitoring System

  • Rachim, Vega Pradana;Kang, Sung-Chul;Chung, Wan-Young;Kwon, Tae-Ha
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • Noncontact electrocardiogram (ECG) measurement using capacitive-coupled technique is a very reliable long-term noninvasive health-care remote monitoring system. It can be used continuously without interrupting the daily activities of the user and is one of the most promising developments in health-care technology. However, ECG signal is a very small electric signal. A robust system is needed to separate the clean ECG signal from noise in the measurement environment. Noise may come from many sources around the system, for example, bad contact between the sensor and body, common-mode electrical noise, movement artifacts, and triboelectric effect. Thus, in this paper, the extended Kalman filter (EKF) is applied to denoise a real-time ECG signal in capacitive-coupled sensors. The ECG signal becomes highly stable and noise-free by combining the common analog signal processing and the digital EKF in the processing step. Furthermore, to achieve ubiquitous monitoring, android-based application is developed to process the heart rate in a realtime ECG measurement.

CardioSentinal: A 24-hour Heart Care and Monitoring System

  • Gao, Min;Zhang, Qian;Ni, Lionel;Liu, Yunhuai;Tang, Xiaoxi
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.1
    • /
    • pp.67-78
    • /
    • 2012
  • People are willing to spend more for their health. Traditional medical services are hospital-centric and patients obtain their treatments mainly at the clinics or hospitals. As people age, more medical services are needed to exceed the potentials of this hospital-centric service model. In this paper, we present the design and implementation of CardioSentinal, a 24-hour heart care and monitoring system. CardioSentinal is designed for in-home and daily medical services. It mainly focuses on the outpatients and elderly. CardioSentinal is an interdisciplinary system that integrates recent advances in many fields such as bio-sensors, small-range wireless communications, pervasive computing, cellular networks and modern data centers. We conducted numerous clinic trials for CardioSentinal. Experimental results show that the sensitivity and accuracy are quite high. It is not as good as the professional measurements in hospital due to harsh environments but the system provides valuable information for heart diseases with low-cost and extreme convenience. Some early experiences and lessons in the work will also be reported.