• Title/Summary/Keyword: daily maximum precipitation intensity

Search Result 22, Processing Time 0.028 seconds

The Variation of Extreme Values in the Precipitation and Wind Speed During 56 Years in Korea (56년간 한반도 강수 및 풍속의 극값 변화)

  • Choi, Eu-Soo;Moon, Il-Ju
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.397-416
    • /
    • 2008
  • This study investigates a long-term variation of the annual extreme value for the instantaneous wind speed and the daily precipitation during 56 years (1951-2006) in Korea. Results show that there is a uptrend for both wind and precipitation extreme records, although regional trends are different from overall pattern in some places, particularly for wind speed. The estimated linear trends are 230 mm/56 yr in the daily precipitation and $15ms^{-1}$/56 yr in the maximum instantaneous wind speed. For precipitation, other indexes such as total annual precipitation, the number of extreme precipitation event, and precipitation intensity have dramatically increased as well, while there has been a clear downtrend for the number of strong wind events (> $14ms^{-1}$). It is found that the minimum surface pressure recorded during typhoon attacks in Korea tends to be decreasing, about 10 hPa/56 yr. This partly explains why the extreme values in the precipitation are increasing in Korea.

A Study on Characteristics of Climate Variability and Changes in Weather Indexes in Busan Since 1904 (1904년 이래의 부산 기후 변동성 및 생활기상지수들의 기후변화 특성 연구)

  • Ha-Eun Jeon;Kyung-Ja Ha;Hye-Ryeom Kim
    • Atmosphere
    • /
    • v.33 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • Holding the longest observation data from April 1904, Busan is one of the essential points to understand the climate variability of the Korean Peninsula without missing data since implementing the modern weather observation of the South Korea. Busan is featured by coastal areas and affected by various climate factors and fluctuations. This study aims to investigate climate variability and changes in climatic variables, extremes, and several weather indexes. The statistically significant change points in daily mean rainfall intensity and temperature were found in 1964 and 1965. Based on the change point detection, 117 years were divided into two periods for daily mean rainfall intensity and temperature, respectively. In the long-term temperature analysis of Busan, the increasing trend of the daily maximum temperature during the period of 1965~2021 was larger than the daily mean temperature and the daily minimum temperature. Applying Ensemble Empirical Mode Decomposition, daily maximum temperature is largely affected by the decadal variability compared to the daily mean and minimum temperature. In addition, the trend of daily precipitation intensity from 1964~2021 shows a value of about 0.50 mm day-1, suggesting that the rainfall intensity has increased compared to the preceding period. The results in extremes analysis demonstrate that return values of both extreme temperatures and precipitation show higher values in the latter than in the former period, indicating that the intensity of the current extreme phenomenon increases. For Wet-Bulb Globe Temperature (effective humidity), increasing (decreasing) trend is significant in Busan with the second (third)-largest change among four stations.

Synoptic Meteorological Classification and Analysis of Precipitation Characteristics in Gimhae Region Using 2DVD and Parsivel (2DVD와 Parsivel 이용한 김해지역 강수사례일의 종관기상학적 분류 및 강수 특성 분석)

  • Cheon, Eun-Ji;Park, Jong-Kil;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.289-302
    • /
    • 2017
  • During the research period, error analysis of the amount of daily precipitation was performed with data obtained from 2DVD, Parsivel, and AWS, and from the results, 79 days were selected as research days. According to the results of a synoptic meteorological analysis, these days were classified into 'LP type, CF type, HE type, and TY type'. The dates showing the maximum daily precipitation amount and precipitation intensity were 'HE type and CF type', which were found to be attributed to atmospheric instability causing strong ascending flow, and leading to strong precipitation events. Of the 79 days, most days were found to be of the LP type. On July 27, 2011 the daily precipitation amount in the Korean Peninsula reached over 80 mm (HE type). The leading edge of the Northern Pacific high pressure was located over the Korean Peninsula with unstable atmospheric conditions and inflow of air with high temperature and high humidity caused ascending flow, 120 mm/h with an average precipitation intensity of over 9.57 mm/h. Considering these characteristics, precipitation in these sample dates could be classified into the convective rain type. The results of a precipitation scale distribution analysis showed that most precipitation were between 0.4-5.0 mm, and 'Rain' size precipitation was observed in most areas. On July 9, 2011, the daily precipitation amount was recorded to be over 80 mm (CF type) at the rainy season front (Jangma front) spreading across the middle Korean Peninsular. Inflow of air with high temperature and high humidity created unstable atmospheric conditions under which strong ascending air currents formed and led to convective rain type precipitation.

Assessment of extreme precipitation changes on flood damage in Chungcheong region of South Korea

  • Bashir Adelodun;Golden Odey;Qudus Adeyi;Kyung Sook Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.163-163
    • /
    • 2023
  • Flooding has become an increasing event which is one of the major natural disasters responsible for direct economic damage in South Korea. Driven by climate change, precipitation extremes play significant role on the flood damage and its further increase is expected to exacerbate the socioeconomic impact in the country. However, the empirical evidence associating changes in precipitation extremes to the historical flood damage is limited. Thus, there is a need to assess the causal relationship between changes in precipitation extremes and flood damage, especially in agricultural region like Chungcheong region in South Korea. The spatial and temporal changes of precipitation extremes from 10 synoptic stations based on daily precipitation data were analyzed using the ClimPACT2 tool and Mann-Kendall test. The four precipitation extreme indices consisting of consecutive wet days (CWD), number of very heavy precipitation wet days (R30 mm), maximum 1-day precipitation amount (Rx1day), and simple daily precipitation intensity (SDII), which represent changes in intensity, frequency, and duration, respectively, and the time series data on flooded area and flood damage from 1985 to 2020 were used to investigate the causal relationship in the ARDL-ECM framework and pairwise Granger causality analysis. The trend results showed that majority of the precipitation indices indicated positive trends, however, CWD showed no significant changes. ARDL-ECM framework showed that there was a long-run relationship among the variables. Further analysis on the empirical results showed that flooded area and Rx1day have significant positive impacts on the flood damage in both short and long-runs while R30 mm only indicated significant positive impact in the short-run, both in the current period, which implies that an increase in flooded area, Rx1day, and R30 mm will cause an increase in the flood damage. The pairwise Granger analysis showed unidirectional causality from the flooded area, R30 mm, Rx1day, and SDII to flood damage. Thus, these precipitation indices could be useful as indicators of pluvial flood damage in Chungcheong region of South Korea.

  • PDF

An improvement on the Criteria of Special Weather Report for Heavy Rain Considering the Possibility of Rainfall Damage and the Recent Meteorological Characteristics (최근 기상특성과 재해발생이 고려된 호우특보 기준 개선)

  • Kim, Yeon-Hee;Choi, Da-Young;Chang, Dong-Eon;Yoo, Hee-Dong;Jin, Gee-Beom
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.481-495
    • /
    • 2011
  • This study is performed to consider the threshold values of heavy rain warning in Korea using 98 surface meteorological station data and 590 Automatic Weather System stations (AWSs), damage data of National Emergency Management Agency for the period of 2005 to 2009. It is in need to arrange new criteria for heavy rain considering concept of rainfall intensity and rainfall damage to reflect the changed characteristics of rainfall according to the climate change. Rainfall values from the most frequent rainfall damage are at 30 mm/1 hr, 60 mm/3 hr, 70 mm/6 hr, and 110 mm/12 hr, respectively. The cumulative probability of damage occurrences of one in two due to heavy rain shows up at 20 mm/1 hr, 50 mm/3 hr, 80 mm/6 hr, and 110 mm/12 hr, respectively. When the relationship between threshold values of heavy rain warning and the possibility of rainfall damage is investigated, rainfall values for high connectivity between heavy rain warning criteria and the possibility of rainfall damage appear at 30 mm/1 hr, 50 mm/3 hr, 80 mm/6 hr, and 100 m/12 hr, respectively. It is proper to adopt the daily maximum precipitation intensity of 6 and 12 hours, because 6 hours rainfall might be include the concept of rainfall intensity for very-short-term and short-term unexpectedly happened rainfall and 12 hours rainfall could maintain the connectivity of the previous heavy rain warning system and represent long-term continuously happened rainfall. The optimum combinations of criteria for heavy rain warning of 6 and 12 hours are 80 mm/6 hr or 100 mm/12 hr, and 70 mm/6 hr or 110 mm/12 hr.

Study on Temporal and Spatial Characteristics of Summertime Precipitation over Korean Peninsula (여름철 한반도 강수의 시·공간적 특성 연구)

  • In, So-Ra;Han, Sang-Ok;Im, Eun-Soon;Kim, Ki-Hoon;Shim, JaeKwan
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.159-171
    • /
    • 2014
  • This study investigated the temporal and spatial characteristics of summertime (June-August) precipitation over Korean peninsula, using Korea Meteorological Administration (KMA)is Automated Synoptic Observing System (ASOS) data for the period of 1973-2010 and Automatic Weather System (AWS) data for the period of 1998-2010.The authors looked through climatological features of the summertime precipitation, then examined the degree of locality of the precipitation, and probable precipitation amount and its return period of 100 years (i.e., an extreme precipitation event). The amount of monthly total precipitation showed increasing trends for all the summer months during the investigated 38-year period. In particular, the increasing trends were more significant for the months of July and August. The increasing trend of July was seen to be more attributable to the increase of precipitation intensity than that of frequency, while the increasing trend of August was seen to be played more importantly by the increase of the precipitation frequency. The e-folding distance, which is calculated using the correlation of the precipitation at the reference station with those at all other stations, revealed that it is August that has the highest locality of hourly precipitation, indicating higher potential of localized heavy rainfall in August compared to other summer months. More localized precipitation was observed over the western parts of the Korean peninsula where terrain is relatively smooth. Using the 38-years long series of maximum daily and hourly precipitation as input for FARD2006 (Frequency Analysis of Rainfall Data Program 2006), it was revealed that precipitation events with either 360 mm $day^{-1}$ or 80 mm $h^{-1}$ can occur with the return period of 100 years over the Korean Peninsula.

Trends on Temperature and Precipitation Extreme Events in Korea (한국의 극한 기온 및 강수 사상의 변화 경향에 관한 연구)

  • Choi, Young-Eun
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.711-721
    • /
    • 2004
  • The aim of this study is to clarify whether frequency and/or severity of extreme climate events have changed significantly in Korea during recent years. Using the best available daily data, spatial and temporal aspects of ten climate change indicators are investigated on an annual and seasonal basis for the periods of 1954-1999. A systematic increase in the $90^{th}$ percentile of daily minimum temperatures at most of the analyzed areas has been observed. This increase is accompanied by a similar reduction in the number of frost days and a significant lengthening of the thermal growing season. Although the intra-annual extreme temperature range is based on only two observations, it provides a very robust and significant measure of declining extreme temperature variability. The five precipitation-related indicators show no distinct changing patterns for spatial and temporal distribution except for the regional series of maximum consecutive dry days. Interestingly, the regional series of consecutive dry days have increased significantly while the daily rainfall intensity index and the fraction of annual total precipitation due to events exceeding the $95^{th}$ percentile for 1901-1990 normals have insignificantly increased.

Development and Use of Digital Climate Models in Northern Gyunggi Province - I. Derivation of DCMs from Historical Climate Data and Local Land Surface Features (경기북부지역 정밀 수치기후도 제작 및 활용 - I. 수치기후도 제작)

  • 김성기;박중수;이은섭;장정희;정유란;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.1
    • /
    • pp.49-60
    • /
    • 2004
  • Northern Gyeonggi Province(NGP), consisting of 3 counties, is the northernmost region in South Korea adjacent to the de-militarized zone with North Korea. To supplement insufficient spatial coverage of official climate data and climate atlases based on those data, high-resolution digital climate models(DCM) were prepared to support weather- related activities of residents in NGP Monthly climate data from 51 synoptic stations across both North and South Korea were collected for 1981-2000. A digital elevation model(DEM) for this region with 30m cell spacing was used with the climate data for spatially interpolating daily maximum and minimum temperatures, solar irradiance, and precipitation based on relevant topoclimatological models. For daily minimum temperature, a spatial interpolation scheme accommodating the potential influences of cold air accumulation and the temperature inversion was used. For daily maximum temperature estimation, a spatial interpolation model loaded with the overheating index was used. Daily solar irradiances over sloping surfaces were estimated from nearby synoptic station data weighted by potential relative radiation, which is the hourly sum of relative solar intensity. Precipitation was assumed to increase with the difference between virtual terrain elevation and the DEM multiplied by an observed rate. Validations were carried out by installing an observation network specifically for making comparisons with the spatially estimated temperature pattern. Freezing risk in January was estimated for major fruit tree species based on the DCMs under the recurrence intervals of 10, 30, and 100 years, respectively. Frost risks at bud-burst and blossom of tree flowers were also estimated for the same resolution as the DCMs.

A Bayesian Analysis of Return Level for Extreme Precipitation in Korea (한국지역 집중호우에 대한 반환주기의 베이지안 모형 분석)

  • Lee, Jeong Jin;Kim, Nam Hee;Kwon, Hye Ji;Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.947-958
    • /
    • 2014
  • Understanding extreme precipitation events is very important for flood planning purposes. Especially, the r-year return level is a common measure of extreme events. In this paper, we present a spatial analysis of precipitation return level using hierarchical Bayesian modeling. For intensity, we model annual maximum daily precipitations and daily precipitation above a high threshold at 62 stations in Korea with generalized extreme value(GEV) and generalized Pareto distribution(GPD), respectively. The spatial dependence among return levels is incorporated to the model through a latent Gaussian process of the GEV and GPD model parameters. We apply the proposed model to precipitation data collected at 62 stations in Korea from 1973 to 2011.

Characteristics of the Erythemal Ultraviolet-B (EUV-B) Irradiance in Anmyeon (Korea Global Atmosphere Watch Center)

  • Hong, Gi-Man;Park, Jeong-Gyoo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E2
    • /
    • pp.74-82
    • /
    • 2008
  • We have examined seasonal and annual means of clear-sky solar noon and daily erythemal ultraviolet-B irradiances measured in Anmyeon. The intensity of the EUV-B irradiance is mainly dependent on solar zenith angle (SZA) and total ozone amounts on clear day conditions. The daily maximum occurs near solar noon time and the highest monthly accumulated EUV-B is seen in July in Anmyeon. The maximum daily variation occurs in June and July due to precipitation and clouds. The 7-year trend of EUV-B irradiance shows that it is slightly increasing. Additionally, we could confirm that aerosol effects such as Asian Dust decreases the EUV-B irradiance reaching the ground surface by 35% to 60%. For more than 45% of the summer days, EUV-B irradiacne was high enough that the UV index registered higher than category Extremely High. This information will be very important for evaluation of the UV index for prevention of both skin cancer and ecosystem damages as well as to understand UV climatology over the Korean Peninsula.