• Title/Summary/Keyword: d-q

Search Result 2,407, Processing Time 0.042 seconds

STRONG MORI MODULES OVER AN INTEGRAL DOMAIN

  • Chang, Gyu Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1905-1914
    • /
    • 2013
  • Let D be an integral domain with quotient field K, M a torsion-free D-module, X an indeterminate, and $N_v=\{f{\in}D[X]|c(f)_v=D\}$. Let $q(M)=M{\otimes}_D\;K$ and $M_{w_D}$={$x{\in}q(M)|xJ{\subseteq}M$ for a nonzero finitely generated ideal J of D with $J_v$ = D}. In this paper, we show that $M_{w_D}=M[X]_{N_v}{\cap}q(M)$ and $(M[X])_{w_{D[X]}}{\cap}q(M)[X]=M_{w_D}[X]=M[X]_{N_v}{\cap}q(M)[X]$. Using these results, we prove that M is a strong Mori D-module if and only if M[X] is a strong Mori D[X]-module if and only if $M[X]_{N_v}$ is a Noetherian $D[X]_{N_v}$-module. This is a generalization of the fact that D is a strong Mori domain if and only if D[X] is a strong Mori domain if and only if $D[X]_{N_v}$ is a Noetherian domain.

SOME RESULTS ON UNIQUENESS OF MEROMORPHIC SOLUTIONS OF DIFFERENCE EQUATIONS

  • Gao, Zong Sheng;Wang, Xiao Ming
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.959-970
    • /
    • 2017
  • In this paper, we investigate the transcendental meromorphic solutions with finite order of two different types of difference equations $${\sum\limits_{j=1}^{n}}a_jf(z+c_j)={\frac{P(z,f)}{Q(z,f)}}={\frac{{\sum_{k=0}^{p}}b_kf^k}{{\sum_{l=0}^{q}}d_lf^l}}$$ and $${\prod\limits_{j=1}^{n}}f(z+c_j)={\frac{P(z,f)}{Q(z,f)}={\frac{{\sum_{k=0}^{p}}b_kf^k}{{\sum_{l=0}^{q}}d_lf^l}}$$ that share three distinct values with another meromorphic function. Here $a_j$, $b_k$, $d_l$ are small functions of f and $a_j{\not{\equiv}}(j=1,2,{\ldots},n)$, $b_p{\not{\equiv}}0$, $d_q{\not{\equiv}}0$. $c_j{\neq}0$ are pairwise distinct constants. p, q, n are non-negative integers. P(z, f) and Q(z, f) are two mutually prime polynomials in f.

VC-DIMENSION AND DISTANCE CHAINS IN 𝔽dq

  • ;Ruben Ascoli;Livia Betti;Justin Cheigh;Alex Iosevich;Ryan Jeong;Xuyan Liu;Brian McDonald;Wyatt Milgrim;Steven J. Miller;Francisco Romero Acosta;Santiago Velazquez Iannuzzelli
    • Korean Journal of Mathematics
    • /
    • v.32 no.1
    • /
    • pp.43-57
    • /
    • 2024
  • Given a domain X and a collection H of functions h : X → {0, 1}, the Vapnik-Chervonenkis (VC) dimension of H measures its complexity in an appropriate sense. In particular, the fundamental theorem of statistical learning says that a hypothesis class with finite VC-dimension is PAC learnable. Recent work by Fitzpatrick, Wyman, the fourth and seventh named authors studied the VC-dimension of a natural family of functions ℋ'2t(E) : 𝔽2q → {0, 1}, corresponding to indicator functions of circles centered at points in a subset E ⊆ 𝔽2q. They showed that when |E| is large enough, the VC-dimension of ℋ'2t(E) is the same as in the case that E = 𝔽2q. We study a related hypothesis class, ℋdt(E), corresponding to intersections of spheres in 𝔽dq, and ask how large E ⊆ 𝔽dq needs to be to ensure the maximum possible VC-dimension. We resolve this problem in all dimensions, proving that whenever |E| ≥ Cdqd-1/(d-1) for d ≥ 3, the VC-dimension of ℋdt(E) is as large as possible. We get a slightly stronger result if d = 3: this result holds as long as |E| ≥ C3q7/3. Furthermore, when d = 2 the result holds when |E| ≥ C2q7/4.

THE RELATION PROPERTY BETWEEN THE DIVISOR FUNCTION AND INFINITE PRODUCT SUMS

  • Kim, Aeran
    • Honam Mathematical Journal
    • /
    • v.38 no.3
    • /
    • pp.507-552
    • /
    • 2016
  • For a complex number q and a divisor function ${\sigma}_1(n)$ we define $$C(q):=q{\prod_{n=1}^{\infty}}(1-q^n)^{16}(1-q^{2n})^4,\\D(q):=q^2{\prod_{n=1}^{\infty}}(1-q^n)^8(1-q^{2n})^4(1-q^{4n})^8,\\L(q):=1-24{\sum_{n=1}^{\infty}}{\sigma}_1(n)q^n$$ moreover we obtain the number of representations of $n{\in}{\mathbb{N}}$ as sum of 24 squares, which are possible for us to deduce $L(q^4)C(q)$ and $L(q^4)D(q)$.

Millimeter Wave Cavity Resonators Using Micromachining Technique (마이크로머시닝 기술을 이용한 밀리미터파 Cavity 공진기 설계)

  • 송기재;윤법상;배중선;박경열;이현태
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.109-112
    • /
    • 2000
  • 본 논문은 마이크로머시닝 기술을 이용한 밀리미터파 대역의 공진기 설계를 제시한다. 밀리미터파 대역에서 3D 설계 tool인. HP HFSS ver. 5.5를 사용하였다. One-port cavity 공진기는 공진 주파수가 39.34 GHz., 반사 손실은 14.5 dB, 그리고, loaded Q (Q$_1$)는 150 을 보인다. Two-port cavity 공진기의 경우, 공진 주파수는 39GHz이고, 삽입 손실과 반사 손실은 각각 4.6 dB 와 19.8 dB. 그리고 loaded Q와 unloaded Q는 각각 44.3과 107로 측정되었다.

  • PDF

NOTES ON THE SPACE OF DIRICHLET TYPE AND WEIGHTED BESOV SPACE

  • Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.393-402
    • /
    • 2013
  • For 0 < $p$ < ${\infty}$, ${\alpha}$ > -1 and 0 < $r$ < 1, we show that if $f$ is in the space of Dirichlet type $\mathfrak{D}^p_{p-1}$, then ${\int}_{1}^{0}M_{p}^{p}(r,f^{\prime})(1-r)^{p-1}rdr$ < ${\infty}$ and ${\int}_{1}^{0}M_{(2+{\alpha})p}^{(2+{\alpha})p}(r,f^{\prime})(1-r)^{(2+{\alpha})p+{\alpha}}rdr$ < ${\infty}$ where $M_p(r,f)=\[\frac{1}{2{\pi}}{\int}_{0}^{2{\pi}}{\mid}f(re^{it}){\mid}^pdt\]^{1/p}$. For 1 < $p$ < $q$ < ${\infty}$ and ${\alpha}+1$ < $p$, we show that if there exists some positive constant $c$ such that ${\parallel}f{\parallel}_{L^{q(d{\mu})}}{\leq}c{\parallel}f{\parallel}_{\mathfrak{D}^p_{\alpha}}$ for all $f{\in}\mathfrak{D}^p_{\alpha}$, then ${\parallel}f{\parallel}_{L^{q(d{\mu})}}{\leq}c{\parallel}f{\parallel}_{\mathcal{B}_p(q)}$ where $\mathcal{B}_p(q)$ is the weighted Besov space. We also find the condition of measure ${\mu}$ such that ${\sup}_{a{\in}D}{\int}_D(k_a(z)(1-{\mid}a{\mid}^2)^{(p-a-1)})^{q/p}d{\mu}(z)$ < ${\infty}$.

COMPOSITION OPERATORS ON 𝓠K-TYPE SPACES AND A NEW COMPACTNESS CRITERION FOR COMPOSITION OPERATORS ON 𝓠s SPACES

  • Rezaei, Shayesteh
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.55-64
    • /
    • 2017
  • For -2 < ${\alpha}$ < ${\infty}$ and 0 < p < ${\infty}$, the $\mathcal{Q}_K$-type space is the space of all analytic functions on the open unit disk ${\mathbb{D}}$ satisfying $$_{{\sup} \atop a{\in}{\mathbb{D}}}{\large \int_{\mathbb{D}}}{{\mid}f^{\prime}(z){\mid}}^p(1-{{\mid}z{\mid}^2})^{\alpha}K(g(z,a))dA(z)<{\infty}$$, where $g(z,a)=log\frac{1}{{\mid}{\sigma}_a(z){\mid}}$ is the Green's function on ${\mathbb{D}}$ and K : [0, ${\infty}$) [0, ${\infty}$), is a right-continuous and non-decreasing function. For 0 < s < ${\infty}$, the space $\mathcal{Q}_s$ consists of all analytic functions on ${\mathbb{D}}$ for which $$_{sup \atop a{\in}{\mathbb{D}}}{\large \int_{\mathbb{D}}}{{\mid}f^{\prime}(z){\mid}}^2(g(z,a))^sdA(z)<{\infty}$$. Boundedness and compactness of composition operators $C_{\varphi}$ acting on $\mathcal{Q}_K$-type spaces and $\mathcal{Q}_s$ spaces is characterized in terms of the norms of ${\varphi}^n$. Thus the author announces a solution to the problem raised by Wulan, Zheng and Zhou.

The Design and Implementation of Library for RTOS Q+ (실시간 운영체제 Q+를 위한 라이브러리 설계 및 구현)

  • Kim, Do-Hyeong;Park, Seung-Min
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.153-160
    • /
    • 2002
  • This paper describes the design and implementation of library for real-time operating system Q+, that was developed for the internet appliance. The library in the real-time operating system should be defined according to the standard interface and support the functions that are adequate to the real-time application. To ensure the compatibility between application programs, the Q+ library follows industrial and international standards, such as POSIX.1, ISO 7942 GKS. And, to support the Q+ application, library provides C standard functions, graphic/window functions, network functions, security support functions, file system functions. The Q+ library was implemented using the Q+ kernel, Digital TV set-top box, and KBUG debugging tool.

Core loss Consideration for d-q axis Inductance Measurement of IPMSM (매입형 영구자석 동기 전동기의 d-q축 인덕턴스 측정 및 철손의 고려)

  • Kwon, Soon-O;Choi, Jin-Chul;Lee, Woo-Taek;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.864-865
    • /
    • 2008
  • This paper deals with d-q axis inductance measurements of IPMSM considering core loss at low speed. d-q axis inductance measurements generally are conducted at rated speed and parallel core loss model can be used to exclude core loss effects on inductances. Core loss is generally modeled parallel to input terminal of d-q axis equivalent circuit. Therefore, the effect of core loss on inductance calculation can be varied by core loss modeling. In this paper, d-q axis inductance is calculated parallel and series core loss modeling. Calculated inductances are compared to FEA results and it is concluded that series core loss modeling is more closed to FEA results at low speed.

  • PDF

THE COMPUTATION METHOD OF THE MILNOR NUMBER OF HYPERSURFACE SINGULARITIES DEFINED BY AN IRREDUCIBLE WEIERSTRASS POLYNOMIAL $z^n$+a(x,y)z+b(x,y)=0 in $C^3$ AND ITS APPLICATION

  • Kang, Chung-Hyuk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.169-173
    • /
    • 1989
  • Let V={(x,y,z):f=z$^{n}$ -npz+(n-1)q=0 for n .geq. 3} be a compled analytic subvariety of a polydisc in $C^{3}$ where p=p(x,y) and q=q(x,y) are holomorphic near (x,y)=(0,0) and f is an irreducible Weierstrass polynomial in z of multiplicity n. Suppose that V has an isolated singular point at the origin. Recall that the z-discriminant of f is D(f)=c(p$^{n}$ -q$^{n-1}$) for some number c. Suppose that D(f) is square-free. then we prove that by Theorem 2.1 .mu.(p$^{n}$ -q$^{n-1}$)=.mu.(f)-(n-1)+n(n-2)I(p,q)+1 where .mu.(f), .mu. p$^{n}$ -q$^{n-1}$are the corresponding Milnor numbers of f, p$^{n}$ -q$^{n-1}$, respectively and I(p,q) is the intersection number of p and q at the origin. By one of applications suppose that W$_{t}$ ={(x,y,z):g$_{t}$ =z$^{n}$ -np$_{t}$ $^{n-1}$z+(n-1)q$_{t}$ $^{n-1}$=0} is a smooth family of complex analytic varieties near t=0 each of which has an isolated singularity at the origin, satisfying that the z-discriminant of g$_{t}$ , that is, D(g$_{t}$ ) is square-free. If .mu.(g$_{t}$ ) are constant near t=0, then we prove that the family of plane curves, D(g$_{t}$ ) are equisingular and also D(f$_{t}$ ) are equisingular near t=0 where f$_{t}$ =z$^{n}$ -np$_{t}$ z+(n-1)q$_{t}$ =0.}$ =0.

  • PDF