• Title/Summary/Keyword: cytotoxicity, nano-food

Search Result 7, Processing Time 0.03 seconds

Safety assessment of biological nanofood products via intelligent computer simulation

  • Zhao, Yunfeng;Zhang, Le
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.121-134
    • /
    • 2022
  • Emerge of nanotechnology impacts all aspects of humans' life. One of important aspects of the nanotechnology and nanoparticles (NPs) is in the food production industry. The safety of such foods is not well recognized and producing safe foods using nanoparticles involves delicate experiments. In this study, we aim to incorporate intelligent computer simulation in predicting safety degree of nanofoods. In this regard, the safety concerns on the nano-foods are addressed considering cytotoxicity levels in metal oxides nanoparticles using adaptive neuro-fuzzy inference system (ANFIS) and response surface method (RSM). Three descriptors including chemical bond length, lattice energy and enthalpy of formation gaseous cation of 15 selected NPs are examined to find their influence on the cytotoxicity of NPs. The most effective descriptor is selected using RSM method and dependency of the toxicity of these NPs on the descriptors are presented in 2D and 3D graphs obtained using ANFIS technique. A comprehensive parameters study is conducted to observe effects of different descriptors on cytotoxicity of NPs. The results indicated that combinations of descriptors have the most effects on the cytotoxicity.

Study on the Antioxidant Effects of Nano-Selenium Microcapsule (Nano-Selenium Microcapsule의 항산화에 관한 연구)

  • Jeong, Hun;Yoo, Il-Su;Kim, Kyung-Sun;Lee, Soon-Young;Mun, Yeun-Ja;Jeon, Byoung-Kook;Ryu, Moon-Hee;Choi, Kyung-Soon
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.564-569
    • /
    • 2012
  • Selenium was initially considered toxic to humans, but it was then discovered that selenium is essential for normal life processes. Selenium plays important roles in antioxidants. It is expected that chitosan microcapsules containing nano-selenium will be able to be used as a key material in bio-medical and cosmetic applications. The high concentration of chitosan derivatives guarantees increased antioxidative activity. Both inorganic and organic forms of selenium can be nutritional sources. The antioxidant properties of selenoproteins help prevent cellular damage from free radicals. The objective of this experiment was to study the antioxidative activity of chitosan nano-selenium. Our experiments were divided into five groups, in the presence of various concentrations(0.1%, 0.3%, 0.5%, 0.7%, and 0.9%) of chitosan. We performed an assessment of the antioxidant properties and cytotoxicity of respective concentrations of chitosan nano-selenium. The antioxidant activity was examined by the free radical scavenging activity on 1,1-diphenyl-2-picrylhydrazyl(DPPH) assay. The cytotoxicity effect was measured by means of 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay. As a result, the electron donating abilities of 0.1%, 0.3%, 0.5%, 0.7%, and 0.9% of chitosan nano-selenium exhibited effective andioxidant scavenging activity at 12.5 ${\mu}g/m{\ell}$ against DPPH radicals. 0.3% chitosan nano-selenium did not show cytotoxicity on human keratinocytes. In general, the cytotoxicity of 0.1% and 0.9% chitosan nano-selenium showed the lowest effects. Though low cytotoxicity of 0.5% and 0.7% chitosan nano-selenium exhibited 29.67% and 38.4% against human keratinocytes on adding 100 ${\mu}g/m{\ell}$ and 50 ${\mu}g/m{\ell}$, respectively, cell vitality was recovered with 200 ${\mu}g/m{\ell}$. These findings support the notion that chitosan nano-selenium may be useful as a new active ingredient source for bioactive compounds.

Safety evaluation of bacteriophages for application as sanitizers (박테리오파지의 살균소독제 응용을 위한 안전성 평가)

  • Park, Do-Won;Lee, Young-Duck;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.109-112
    • /
    • 2020
  • To evaluate the safety of bacteriophages for application of sanitizer, endotoxin content and cell cytotoxicity of two Escherichia coli and four Staphylococcus aureus phages were determined. Endotoxin ratio was determined by the Limulus amebocyte lysate (LAL) assay as a test for representative biological endotoxin content. The average endotoxin average content of the 9 log PFU/mL lysate was 18.6 EU/mL and that of the 10 log PFU/mL lysate was 5.9 EU/mL, suggesting that the phage lysate was not suitable for clinical applications, but suitable for food pathogen control applications. To confirm the cell cytotoxicity of the phage lysates, MTT assay was performed using Raw 264.7 cells treated with 9 log PFU/mL phages. Results of the assay indicated that the phage lysates did not significantly decrease the cell viability (p>0.05). These results indicated that bacteriophages would be suitable as a food safety sanitizer.

Enhancement of Immune Activities of Peptides from Asterias amurensis Using a Nano-encapsulation Process (나노 입자 불가사리 펩타이드의 면역 활성 증진)

  • Jeong, Hyang-Suk;Oh, Sung-Ho;Kim, Seoung-Seop;Jeong, Myoung-Hoon;Choi, Woon-Yong;Seo, Yong-Chang;Choi, Geun-Pyo;Kim, Jin-Chul;Lee, Hyeon-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.424-430
    • /
    • 2010
  • Immuno-modulatory activities of peptides from Asterias amurensis were investigated using a nano-encapsulation process. The molecular weights of the peptides in the range of 5-7 kDa were separated using Sephadex G-75 gel filtration. Eighty-five percent of the nano-particles were in the 300 nm range using dynamic light scattering. The cytotoxicity of the A. amurensis nano-particles against CCD-986sk human dermal fibroblast cells was 11.64% after adding 1.0 mg/mL of the samples, which was lower than that from the control (13.28% collagen). The secretion of $NO^-$ from macrophages was estimated as $40\;{\mu}M$ after adding 1.0 mg/mL of gelatin nano-particles, which was higher than the others. Prostaglandin $E_2$ production from UV-induced human skin cells decreased greatly to 860 pg/mL after adding 1.0 mg/mL of the samples. Confocal microscopy revealed that nano-particles effectively penetrated the cells within 1 hour. From these results, we consider that nano-encapsulation of the peptides from A. amurensis can improve their biological functions.

Whitening Effect and Skin Regeneration Effect of Red Sea Cucumber Extract (홍해삼 추출물의 멜라닌 형성 억제를 통한 미백효과 및 피부 재생효과에 관한 연구)

  • Jeon, Mi Ji;Kim, Eun Ji;Kim, Geun Tae;Kim, Ga Yeon;Lee, Seung Jae;Jung, In Cheol;Kim, Sang-Yong;Kim, Young Min
    • Journal of Life Science
    • /
    • v.28 no.6
    • /
    • pp.681-687
    • /
    • 2018
  • Recently, several researchers have been developing cosmetics from natural ingredients for skin whitening and anti-aging products. The red sea cucumber (RSC), Apostichopus japonicas, is a species of sea cucumber in the family stichopodiae, which is widely distributed in China, Japan, and Korea. To use Red Sea Cucumber as a cosmetic ingredient, its inhibitory effects on melanogenesis and the anti-aging effects of RSC extracts were investigated. First, a tyrosinase activity assay was performed, which showed that RSC inhibited tyrosinase activity at a concentration of $200{\mu}g/ml$. An MTT assay was carried out to evaluate cell toxicity, and the results showed that RSC extract has no cytotoxicity in HaCaT cells. Furthermore, the mRNA expression levels of tyrosinase, tyrosinase related protein 1 (TRP-1), tyrosinase related protein 2 (TRP-2), microphthalmia-associated transcription factor (MITF), and matrix metalloproteinase (MMPs) genes treated with RSC extract in B16F10 and HaCaT cells decreased. Moreover, a wound-healing assay was performed to identify the cell regeneration effect of RSC extracts. Also, a skin turnover effect was confirmed by creating a three-dimensional cell culture with HaCaT and human fibroblasts. Altogether, the results suggested that Red Sea Cucumber may possess a high ability to induce whitening and anti-wrinkle effects as a cosmeceutical ingredient.

Anti-hyperlipidemic activity of Rhynchosia nulubilis seeds pickled with brown rice vinegar in mice fed a high-fat diet

  • Park, Ki-Moon;Lee, Seung Ho
    • Nutrition Research and Practice
    • /
    • v.7 no.6
    • /
    • pp.453-459
    • /
    • 2013
  • The abnormal content of blood lipids often results in metabolic diseases, such as hyperlipidemia and obesity. Many agents, including natural sources from traditional food, have been developed to regulate the blood lipid contents. In this study, we examined the anti-hyperlipidemic activity of Rhynchosia nulubilis seeds pickled with brown rice vinegar (RNSpBRV), a Korean traditional pickled soybean food. Since RNSpBRV is made of R. nulubilis seeds (RNS) soaked in brown rice vinegar (BRV), we compared the anti-adipogenic activity between RNS, BRV and solid fraction of RNSpBRV (SF-RNSpBRV), liquid fraction of RNSpBRV (LF-RNSpBRV). For this, the inhibitory effect of lipid accumulation in 3T3-L1 adipocyte was checked by adding methanol extracts of mixed RNS and BRV, LF-RNSpBRV, and SF-RNSpBRV. The addition of each methanol extract up to 1 mg/ml showed no cytotoxicity on 3T3-L1 adipocyte, and approximately 20% of the lipid droplet formation was suppressed with the methanol extract of BRL or SF-RNSpBRV. The highest suppression (42.1%) was achieved with LF-RNSpBRV. In addition, mice fed a high fat diet (HFD) supplemented with 5% RNSpBRV powder led to increased high density lipoprotein (HDL) cholesterol and lower blood glucose, triglyceride, and total cholesterol compared to mice fed with a HFD diet only. Interestingly, the size of the epididymis cells gradually decreased in HFD + 1% RNSpBRV and HFD + 5% RNSpBRV-fed mice if compared those of HFD-fed mice. Taken together, these results provide evidence that RNSpBRV has a regulatory role in lipid metabolism that is related to hyperlipidemia.

Improvement of Biological activities of Acer mono and Acer okamotoanum Saps by Nano-encapsulation Process (나노입자화 공정을 이용한 고로쇠 및 우산고로쇠 수액의 유용생리활성 증진)

  • Jeong, Myoung-Hoon;Ha, Ji-Hye;Oh, Sung-Ho;Kim, Seung-Seop;Jin, Ling;Lee, Hak-Ju;Kang, Ha-Young;Prak, Uk-Yeon;Lee, Hyeon-Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.4
    • /
    • pp.399-408
    • /
    • 2009
  • We investigated the improvement of immuno-modulatory activities of sap of Acer mono and A. okamotoanum encapsulated with edible polymers. Anticancer activities and immune activities such as human B and T cell growth, secretion of cytokines and natural killer cell growth were observed. Both human immune B and T cells were increased up to 30~50% by the addition of nano particle sap of Acer mono and A. okamotoanum. The secretion of Interleukin-6 (IL-6) and Tumor necrosis factor-a (TNF-a) from human immune B and T cells were also significantly increased compare to the control. Natural Killer (NK) cell growth was enhanced to $19.4{\times}10^5$ cells/mL in adding nano encapsulated sap of A.okamotoanum. The cytotoxicity of the sample on normal human lung cell (HEL299) was below 19.8% in adding 1.0 mg/mL of the nano particle sap of A. okamotoanum. Generally, the growth of all three human lung adenocarcinoma, human stomach adenocarcinoma and human liver adenocarcinama was inhibited up to 85% in adding 1.0 mg/mL of the encapsulated sap. Interestingly enough, the encapsulated sap was completely penetrated into human cancer cells within 30 min after addition. It showed that the encapsulation of the sap definitely increased its biological activities, which can expand its use to wide range of food industries.